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Abstract

We assess the quantitative relevance of expectations-driven sovereign debt crises,

focusing on the Southern European crisis of the early 2010’s and the Argentine

default of 2001. The source of multiplicity is the one in Calvo (1988). Key for mul-

tiplicity is an output process featuring long periods of either high growth or stag-

nation that we estimate using data for those countries. We find that expectations-

driven debt crises are quantitatively relevant but state dependent, as they only

occur during stagnations. Expectations are a major driver explaining default rates

and credit spread differences between Spain and Argentina.
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1 Introduction

How important are expectations in triggering sovereign debt crises? In this paper,

we explore the quantitative implications of a model of sovereign debt crises that exhibits

state-dependent multiplicity. The mechanism we consider to generate multiplicity is the

one proposed by Calvo (1988) in which high interest rates induce high default probabilities

that in turn justify the high rates. We show that the mechanism is quantitatively relevant,

especially during periods of economic stagnation. We build on Ayres et al. (2018), who

argue that the mechanism in Calvo (1988) is of interest when the fundamental uncertainty

is bimodal, with both good and bad times.1

Our analysis of self-fulfilling equilibria in interest rate spreads is motivated by two

particular episodes of sovereign debt crises. The first one is the relatively recent European

sovereign debt crisis of 2012. The peak of the crisis was in the summer of 2012 and receded

substantially after Draghi’s “whatever it takes” speech in July, followed by the September

policy announcements by the European Central Bank (ECB).2 The spreads on Italian

and Spanish public debt, which were very close to zero since the introduction of the euro

and until April 2009, started to increase and exceeded 5% for both Italy and Spain by the

time the ECB announced the Outright Monetary Transactions (OMT) program. They

were considerably higher in Portugal and, in particular, Ireland, and Greece. With the

announcement of the OMT, according to which the central bank stands ready to purchase

euro-area sovereign debt in secondary markets, the spreads in most of those countries slid

down to less than 2%, even though the ECB did not actually intervene. The potential

self-fulfilling nature of the events leading to the high spreads in the summer of 2012 was

explicitly used by the president of the ECB to justify the policy.3

The second episode is the 1998–2002 Argentine crisis. Back in 1993, Argentina had

regained access to international capital markets, but the average country risk spread on

dollar-denominated bonds for the period 1993–1999 period, relative to the U.S. bond, was

7%. The debt-to-GDP ratio was only 35% and the average yearly growth rate of GDP

was around 5%. Still, the Argentine government defaulted in 2002, after four years of a

long recession. Note that a 7% spread on a 35% debt-to-GDP ratio amounts to almost

2.5% of GDP on extra interest payments per year. Accumulated over the 1993–1999

period, this represents 15% of GDP, or almost half of the debt-to-GDP ratio of Argentina

in 1993. An obvious question arises: Had Argentina faced lower interest rates, would it

have defaulted in 2002?

The main contribution of this paper is to show that the mechanism that generates

1See Lorenzoni and Werning (2019) who also discuss multiplicity as in Calvo (1988) using a bimodal
endowment distribution.

2Draghi’s full speech is available at https://www.ecb.europa.eu/press/key/date/2012/html/

sp120726.en.html.
3See De Grauwe and Ji (2013) on the poor correlation between spreads and fundamentals during the

European sovereign debt crisis.
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multiplicity in Calvo (1988) is quantitatively relevant. Key for multiplicity is a bimodal

output growth process, with persistent good and bad times. We modify an otherwise

standard sovereign default model to incorporate an endowment growth rate process that

follows a Markov chain, with persistent high- and low-growth regimes. To calibrate the

model, we estimate this output process for a set of countries that have recently been

exposed to sovereign debt crises. We show that the model features self-fulfilling debt

crises, which resemble the two episodes just described.

In particular, the model features equilibria in which interest rates can be high or low,

depending on expectations. That is, a sunspot realization can induce discrete jumps in

the interest rates faced by the borrower, even with no change in fundamentals. These

discrete jumps in rates can only happen if fundamentals are weak. It is only in times of

persistently low growth that spreads can be high because of expectations. In the high-

growth regime, the region of multiplicity is either empty or negligibly small. Thus, the

multiplicity we compute is state dependent: expectations can trigger a crisis only during

persistent stagnations.

The schedule of interest rates faced by the borrower can also exhibit discrete jumps

because of fundamentals, due to the bimodal growth process. Thus, interest rate jumps

are not necessarily a sign of a bad-expectations draw. The interest rate jumps, due to

either fundamentals or expectations, induce policy responses by the borrower that can

be interpreted as endogenous austerity. The borrower optimally refrains from increasing

debt in order to avoid the costs associated with those jumps. Those discrete interest

rate jumps can also induce policy responses that resemble gambling for redemption of

the type in Conesa and Kehoe (2017), where the borrower raises debt levels beyond the

jump in rates. Both endogenous austerity and gambling for redemption are featured in

the equilibrium simulations discussed in the paper.

In our quantitative exercises, we consider two calibrations: one that is targeted to

Argentina, and one that is targeted to Spain. A key assumption we make is that expec-

tations are more pessimistic for Argentina, meaning that high interest rates are selected

more frequently than for Spain. We then explore the effect of assuming either more

optimistic or pessimistic expectations for both Argentina and Spain.

We show that the Argentinean calibration generates equilibrium paths that resemble

the events of the 2001 debt crisis, with credit spreads jumping by magnitudes similar to

the observed ones. While endogenous austerity is present in the calibration for Argentina,

the optimal policy eventually switches to gambling for redemption, thus generating high

spreads in equilibrium. The calibration for Spain instead only features endogenous aus-

terity. That is, the threat of high spreads triggers endogenous austerity, so that the

high spreads are not observed along the equilibrium path. Thus, our model captures the

austerity measures implemented by Spain but only in response to off-equilibrium high

spreads.
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A main finding of our paper is that changes in expectations, as measured by the

sunspot probability of selecting an interest rate schedule, have a large quantitative effect

on model outcomes. If we assume optimistic expectations for Argentina, default rates and

credit spreads decline drastically. That is, without any change in fundamentals, but only

in beliefs, Argentina mutates from a serial defaulter to essentially a non-defaulter. Sim-

ilarly, assuming pessimistic expectations for Spain result in high default rates and credit

spreads, even if there is no change in fundamentals. Thus, our model suggests that the

difference in expectations is the major driver explaining differences in default rates and

credit spreads between Argentina and Spain.

The central results of this paper–that expectations-driven sovereign debt crises are

empirically plausible–can contribute to the assessment of the role of policy in sovereign

debt crises. It is when fundamentals are weak that a lender of last resort may be called in,

not because fundamentals are weak but because the weak fundamentals create conditions

for a role of expectations. Of course, the role of the lender of last resort in periods of

stagnation will have effects on the economy beyond those periods in which interest rates

could be high because of expectations.

Related literature Our model follows the quantitative sovereign debt crises litera-

ture that grew out of the work of Eaton and Gersovitz (1981) and was further developed

by Aguiar and Gopinath (2006) and Arellano (2008).4 In these models, a sovereign bor-

rower faces a stochastic endowment and issues non-contingent debt to a large number of

risk-neutral lenders. There is no commitment to repay. Timing and choice of actions are

important: the assumptions in Aguiar and Gopinath (2006) or Arellano (2008) are that

the borrower moves first and chooses the level of non-contingent debt at maturity. We

make two main changes to the standard setup. First, we assume that the borrower

chooses current debt rather than debt at maturity. This assumption is key to generating

multiplicity. When the borrower chooses debt at maturity, it is implicitly choosing the

default probability and therefore also the interest rate on the debt. Instead, when the

borrower chooses current debt, default may be likely if interest rates are high or unlikely

if interest rates are low.5

One fragility of the multiplicity mechanism in Calvo (1988) is that, for commonly

used distributions of the endowment process, the high-rate schedule is downward sloping,

meaning that the interest rates that the country faces decrease with the level of debt. That

is not the case if the endowment is drawn from a bimodal distribution with good and

bad times, as shown in Ayres et al. (2018) and Lorenzoni and Werning (2019). We

depart from the standard setup in assuming that the endowment growth process follows

4Other related literature includes Aguiar and Amador (2020), Aguiar et al. (2014), Bocola and Dovis
(2019), Cole and Kehoe (2000), Conesa and Kehoe (2017), Corsetti and Dedola (2014), Lorenzoni and
Werning (2019), and Roch and Uhlig (2018), among others.

5Ayres et al. (2018) show that the timing of moves is also key. In particular, when lenders are first
movers, there is multiplicity regardless of whether the borrower chooses current or future debt.
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such a bimodal distribution. This change is empirically founded: we estimate a Markov-

switching regime for the growth rate of output for Argentina, Brazil, Italy, Portugal, and

Spain, and, in all cases, we estimate processes that alternate between persistent high and

low growth. We view this feature of the endowment process as reflecting the likelihood

of relatively long periods of stagnation in a way that is consistent with the evidence in

Kahn and Rich (2007).

The paper closest to ours in its motivation is Lorenzoni andWerning (2019). They also

consider the mechanism in Calvo (1988) but exploit a different source of multiplicity due

to debt dilution with long maturities. In their environment, multiplicity arises because of

the feedback between future and current bond prices: low bond prices tomorrow translate

into low bond prices today, while high bond prices tomorrow translate into high prices

today. This source of multiplicity is also present in our model but we abstract from it

while focusing on multiplicity due to an endowment process with regime switch between

persistent high growth and long stagnations. The endowment process is estimated using

data of countries exposed to sovereign debt crises.

In the context of self-fulfilling rollover crises as in Cole and Kehoe (2000), Aguiar

et al. (2021) also find that simulated moments are sensitive to expectations in a model

calibrated to Mexico. We see our papers as complementary, as we explore a different

source of multiplicity, the one proposed by Calvo (1988).

Also in the context of self-fulfilling rollover crises, Bocola and Dovis (2019) allow

for maturity choice and argue that expectations played a minor role during the Euro-

pean debt crisis. In their environment, governments prefer shorter maturities because of

debt dilution incentives, while they prefer longer maturities because of rollover risk. Be-

cause maturities were reduced during the European debt crisis, their model suggests that

rollover risk was limited during this period. While the source of multiplicity in our model

is different, our quantitative exercise also implies a limited role for expectations in the

case of Spain: jumps in spreads due to bad expectations do not occur in equilibrium, but

only endogenous austerity. There is another important difference in our analysis, since

we treat the sunspot probability as a fixed parameter, while Bocola and Dovis (2019)

allow for a stochastic process. Our comparative statics exercises show that the probabil-

ity of the sunspot has a substantial impact on outcomes, thus suggesting that stochastic

changes in this probability may account for spreads during the European debt crisis of

2012, an issue that may be worth pursuing in future research.

The paper proceeds as follows. In Section 2, we discuss a simple two-period model to

show the key role played by the bimodal distribution in generating multiplicity. In this

case, we can derive analytical expressions that highlight the importance of each of the

few parameters in the model and provide intuition for the results in the more complex

quantitative model of Section 3. In Section 4 we describe the calibration procedure,

including the estimation of the endowment process. In Section 5, we discuss the model
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results and summarize the robustness exercises. Section 6 contains concluding remarks.

2 A two-period model

Here we illustrate the main mechanisms of the model in a simple two-period case. The

economy is populated by a representative agent that draws utility from consumption in

each period and by a continuum of risk-neutral foreign lenders. The initial wealth of the

agent is denoted by ω. The endowment in the second period is distributed according to

y2 =

yl, with probability p

yh, with probability (1− p)

in which yl < yh.6

The representative agent preferences are given by u(c1) + βEu(c2), where u is strictly

increasing, strictly concave, and satisfies standard Inada conditions. We assume that

the initial wealth and the discount factor β are low enough so that the agent will want

to borrow. In period one, the borrower moves first and issues a noncontingent debt

level b. Lenders respond with a gross interest rate R. We denote by R(b) the interest

rate schedule faced by the borrower. In period two, after observing the endowment y2,

the borrower decides whether to pay the debt or to default. In case of repayment, the

borrower consumes the endowment net of debt repayment, c2 = y2 − Rb. In case of

default, there is a penalty expressed as a drop in output to yd < yl. In addition, the

borrower must repay a fraction κ of the debt. Thus, consumption following default is

given by c2 = yd − κb. The agent defaults if the cost of repayment is larger than the

benefit:

(R− κ) b︸ ︷︷ ︸
cost of repayment

> y2 − yd︸ ︷︷ ︸
benefit of repayment

. (1)

In the first period, given initial wealth ω and an interest rate schedule R(b), the

borrower solves the following problem:

V (ω) = max
b

{u(c1) + βEu(c2)} , (2)

subject to c1 = ω + b,

c2 = max
{
y2 −R(b)b, yd − κb

}
,

and is subject to a maximum debt level constraint, b ≤ B.

The assumption that the borrower moves first by choosing a level of debt and that

lenders move next with an interest rate schedule is standard. We depart from the lit-

6The discrete distribution will help make clear the main mechanisms for multiplicity. We owe this to
an insightful discussion by Fernando Alvarez.
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erature as in Aguiar and Gopinath (2006) and Arellano (2008) in that we assume that

the borrower chooses current debt b rather than debt at maturity, Rb. We follow Calvo

(1988) in making this assumption. The risk-neutral lenders will be willing to lend to the

agent as long as the expected return is the same as the risk-free rate R∗; that is,

R∗ = h(R; b) ≡
[
1− Pr

(
y2 − yd < (R− κ) b

)]
R + Pr

(
y2 − yd < (R− κ) b

)
κ, (3)

in which h(R; b) is the expected return to the lender when the interest rate is R. Given

a value for b, the expected return for lenders can be written as

h(R; b) =


R, if R ≤ yl−yd

b
+ κ

R(1− p) + pκ, if yl−yd

b
+ κ < R ≤ yh−yd

b
+ κ

κ, if R > yh−yd

b
+ κ.

(4)

In Figure 1, we plot the expected return as a function of the interest rate R, for

three levels of debt, together with the risk-free rate R∗. Notice that for low levels of

R, the expected return is equal to R since debt is repaid with probability one. In this

region, as R increases, the expected return increases one to one. Eventually, R will be

high enough that the borrower will default in the low output state, which happens with

probability p. At this point, the expected return jumps down. As R increases, the

expected return increases at a lower rate, (1 − p), since repayment happens only in the

high output state. Finally, for high enough R, default will happen with probability one,

and the expected return will be the recovery rate κ. A higher level of debt decreases the

expected return uniformly, shifting the curves downward.

For low levels of debt, there is only one solution to equation (3), with R = R∗. For

intermediate levels of debt, there are two solutions: one solution has R = R∗ associated

with a zero probability of default, and the other has R = (R∗ − pκ)/(1 − p) associated

with a probability of default equal to p. For higher levels of debt, the only solution is

the high rate R = (R∗ − pκ)/(1− p). Finally, for even higher debt, there is no solution.

We can now define the following correspondence relating debt levels to interest rates:

R(b) =


R∗, if b ≤ yl−yd

R∗−κ

R∗−pκ
1−p

, if (1− p)y
l−yd

R∗−κ
< b ≤ (1− p)y

h−yd

R∗−κ

∞, if b > (1− p)y
h−yd

R∗−κ

(5)

An equilibrium is an interest rate schedule R(b) and a debt policy function b(ω) such

that, given the schedule, the debt policy function solves the problem of the borrower in

equation (2), and the schedule R(b) is a selection of the correspondence R(b).

The correspondence R(b) is plotted (red dashed line) in Figure 2. For all debt levels
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Figure 1: Expected return function for different levels of debt

(a) low debt
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(b) medium debt
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medium b

(c) high debt
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h
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)

R$

R$!p5
1!p

high b

below b1 ≡ (1− p)y
l−yd

R∗−κ
, there is only one interest rate, the risk-free rate. For debt levels

between b1 and b2 ≡ yl−yd

R∗−κ
, there are two possible interest rates, the risk-free rate and a

high rate. For debt levels between b2 and b ≡ (1−p)y
h−yd

R∗−κ
, there is again only one interest

rate, the high rate. There are multiple interest rate schedules that can be selected from

this correspondence. We focus on two of those schedules: a low interest rate schedule,

Rlow(b) in Figure 2a (blue solid line), and a high interest rate schedule, Rhigh(b) in Figure

2b (blue solid line).7

We think of b1 as the debt level above which interest rates jump because of expec-

tations, since alternative expectations could sustain low interest rates. We think of b2

7Notice that it is always the case that b1 < b2, and that b1 < b̄. However, while Figure 2 represents
the case in which b2 < b̄, there are parameter values such that the opposite is true. We chose to plot
the case in which b2 < b̄ because this is the case in the quantitative model of Section 3.

8



as the debt level above which interest rates jump because of fundamentals, since no ex-

pectations could sustain lower interest rates. We think of b̄ as an endogenous borrowing

limit, since any debt issued above this level implies a default probability of one.

Figure 2: Interest rate schedules

(a) low interest rate schedule

R$

R$!p5
1!p

b1 = (1! p) yl!yd

R$!5
b2 = yl!yd

R$!5
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R$!5

Rlow(b)

(b) high interest rate schedule

R$
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1!p

b1 = (1! p) yl!yd

R$!5
b2 = yl!yd

R$!5
7b = (1! p) yh!yd

R$!5

Rhigh(b)

Whether spreads are low or high has implications for the level of debt that can be

raised. The region of multiplicity happens for intermediate levels of debt, between b1 and

b2. If debt is sufficiently low, interest rates can only be low, whereas if debt is sufficiently

high, rates can only be high. It is for intermediate levels of debt that interest rates can

be either high or low depending on expectations.

Figure 3 shows the optimal debt policy as a function of the initial wealth for the high

and low interest rate schedules, for a particular example. For high levels of wealth, the

optimal choice of debt is below b1, and thus the schedule does not matter. As wealth

declines, the optimal amount of debt is higher, as indicated by the downward-slopping

segment at the bottom right of the figure. Eventually, for low enough wealth, the optimal

amount of debt is equal to b1. At that point, the schedules matter. For the high interest

rate schedule, the borrower chooses to keep debt levels at b1 in order to avoid the discrete

jump in interest rates on the whole level of debt. Eventually, for low enough wealth,
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the marginal utility of consumption in the first period is high enough that the borrower

chooses to increase its debt level discretely. This discrete jump shows that the borrower

has incentives to avoid at least part of the multiplicity region between b1 and b2. As

wealth decreases even more, debt levels keep increasing until they reach the endogenous

borrowing limit b. When the borrower faces the low interest rate schedule, borrowing

keeps on increasing as wealth declines until it reaches the level b2. At this point, there is

a choice to keep it constant for lower levels of wealth. Eventually, there is also a discrete

jump, and debt levels continue to increase until they reach the endogenous borrowing

limit.

The choice of keeping debt levels constant as wealth decreases happens in our model

because of the discrete jumps in interest rates. These jumps can be induced by either

expectations, as depicted in the flat region of the red dashed line at the bottom right of

Figure 3, or weak fundamentals, as shown in the flat region of the blue solid line at the

top left of Figure 3. These flat regions correspond to a form of endogenous austerity,

where the borrower adjusts consumption to avoid the high rates. The jumps in the

debt policy function indicate decisions by the borrower to end endogenous austerity,

increase borrowing discretely, and accept a higher rate. This resembles the gambling for

redemption described in Conesa and Kehoe (2017). As we show, the quantitative model

of Section 3 exhibits both endogenous austerity and gambling for redemption.

Figure 3: Debt policy function

initial wealth (!)

b(!;Rlow(b))

b(!;Rhigh(b))

b1

b2

b

The probability of the low endowment state We start the comparative statics by

considering alternative probabilities of the low endowment state p. Figure 4 plots the

interest rate correspondence R(b) for two values of p. The higher p, the higher is the

interest rate that the borrower faces if default happens in the low endowment state. The

higher the interest rate, the lower is the minimum debt level such that the borrower

defaults in the low state. It follows that a higher p is associated with a higher interest

rate and a larger region of multiplicity.
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Figure 4: Interest rate correspondence for different p

debt (b)

R
high p

low p

We relate the parameter p to the parameters in the full quantitative model in the next

section. There, we have a two-state Markov process in the growth rates of output. The

probability of switching to, or remaining at, the low-growth regime is the analog of the

value of p in this two-period model. In the estimations described in Section 3, we show

that low output growth states are persistent, meaning higher p during stagnations. High

output growth states are also very persistent, meaning lower p during expansions. Con-

sequently, in the quantitative model, stagnations come with larger regions of multiplicity

and higher interest rates.

The role of the bimodal distribution In order to highlight the essential role of

the bimodal distribution, we consider a generalization in which the endowment in the

second period is drawn from a bimodal normal distribution, y2 ∼ pN(yl, σ2) + (1 −
p)N(yh, σ2). Figure 5 shows, for different values of σ, the expected return function

h(R; b) in Figure 5a and the implied interest rate correspondence R(b) in Figure 5b. The

case with σ = 0 (red solid line) is the one analyzed before, in which there are two solutions

to the arbitrage condition in equation (3). For strictly positive small levels of σ (blue

dotted line), there are now four solutions to equation (3). However, the two solutions on

the downward-sloping part of the expected return function are such that the expected

return increases when the interest rate decreases. It follows that those solutions are

also on the downward-slopping parts of the interest rates schedules depicted in panel

5b. Furthermore, not only does the interest rate go down with higher current debt b,

but total future debt payments, R(b)b, also go down when the level of current debt goes

up. This also implies that the agent would never choose to be in a decreasing part of

the schedule. For these reasons and others, discussed in detail in Ayres et al. (2015) and

Lorenzoni and Werning (2019), we rule out solutions along these parts of the interest rate

schedule. For higher values of σ (black dashed line), there are two solutions to equation

(3), but one can be ruled out. Therefore, to have multiple admissible equilibria, we need
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to have relatively low levels of σ. We show this is the case in the estimations of Section

3.

Figure 5: Varying the standard deviation of endowment shock, σ

(a) expected return function
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The endowment levels yl and yh are also important for multiplicity. As yl approaches

yh, multiplicity disappears as the endowment distribution converges to the unimodal case.

A similar rationale will apply to the quantitative results of Section 3.

3 A quantitative model of self-fulfilling debt crises

We calibrate an infinite-horizon model to evaluate the quantitative role of multiplicity

in triggering sovereign debt crises. We estimate the endowment process in the model using

data on GDP growth for a set of developed as well as developing economies that were

exposed to debt crisis episodes. The calibrated model generates self-fulfilling debt crises

that can explain the events in Argentina in 2001 and can also shed light on the events in

Spain in the 2010s.
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3.1 Model

We expand the two-period model of Section 2 to an infinite-horizon framework with

output growth and long-term debt. We assume an endowment economy, where output

growth follows a two-state Markov process. At the beginning of each period the sovereign

chooses whether to default or not on the total stock of outstanding debt. Upon repayment,

the sovereign chooses consumption, financed with current endowment and new bond

issuance net of repayment. Upon default, the sovereign is excluded from financial markets

and loses a fraction of the endowment. While in default, the sovereign may be given the

chance to re-enter financial markets. If the decision is to re-enter, the sovereign recovers

the totality of the endowment and must honor a fraction of the defaulted debt. Specific

details follow below.

Time is discrete, runs forever, and is indexed by t = 0, 1, 2, . . .. We assume a small

open economy that receives a stochastic endowment Yt every period. The preferences of

the sovereign are standard,

E0

∞∑
t=0

βt C
1−γ
t

1− γ
, (6)

where Ct denotes consumption. The utility function is consistent with balanced growth,

which allows us to detrend the model as shown below.

Endowment process.—The endowment grows over time as the result of a persistent

and a transitory shock. In each period t, the endowment Yt is given by

Yt = Γte
σϵt , (7)

Γt = gtΓt−1, (8)

where ϵt is i.i.d., ϵt ∼ N (0, 1), and gt follows a two-state Markov process. Thus, gt is the

current trend growth and Γt is the accumulated growth up to period t. We assume that

gt can be either high or low—gt ∈ {gH , gL}—representing times of either fast growth or

stagnation. The bimodal nature of gt is empirically plausible and crucial for expectations

to play a role in the model.

Debt contract.—The sovereign issues long-term bonds that promise a geometrically

decreasing sequence of future payments, governed by the rate δ ∈ [0, 1], as in Hatchondo

and Martinez (2009). A new debt issuance Nt in period t promises the sequence of

payments, starting from t+ 1,

NtRt, (1− δ)NtRt, (1− δ)2NtRt, . . . .

The value for Rt is determined on the date of issuance, t, and remains constant over the

duration of the bond. For δ = 1, R is the gross return on a one-period bond, while for
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δ = 0, R is the net interest rate on a consol.

Let Bt denote total payments due at time t because of previous issuance. Thus, we

have

Bt = Nt−1Rt−1 + (1− δ)Nt−2Rt−2 + (1− δ)2Nt−3Rt−3 + . . .

=
∞∑
j=1

(1− δ)j−1Nt−jRt−j. (9)

This debt contract formulation is convenient because it allows to write debt payments Bt

recursively as

Bt = (1− δ)Bt−1 +Rt−1Nt−1. (10)

We refer to Bt as the debt service in period t.

Let Q be the price of a bond with a payment of Rt = R. We compute the interest

rate ρ of such a bond so that the present value of promised cash flows equals its price

Q. That is, the rate ρ satisfies

Q =
∞∑
j=1

(1− δ)j−1R

(1 + ρ)j
. (11)

Note that the rate ρ is pinned down by the ratio of Q and R. Previous work has typically

normalized R and let the price Q be determined upon issuance in equilibrium. Instead, we

normalize the price to Q = 1 upon issuance and let R be determined in equilibrium. This,

together with the assumption that the borrower chooses the current debt issuance, allows

for the multiplicity in R as discussed in the two-period model of Section 2. This is a

normalization only upon issuance, but the price of the bond can fluctuate thereon, as we

discuss below. Then, solving for ρ in (11) yields

ρ = R− δ. (12)

While not in default, the resource constraints are

Ct +Bt = Yt +Nt, (13)

where, given our normalization, new issuance Nt has a price of one.

We make the same assumptions on the timing of moves and actions of the bor-

rower as in the two-period model. In particular, we assume that the borrower moves

first and chooses current debt issuance Nt. Lenders move next and offer a schedule

R(Nt;Bt,Γt−1, gt, st), where st is a sunspot variable that selects a particular interest rate

when more than one is consistent with an equilibrium.

Sunspot.—The sunspot st is the key variable in our model that captures the role of
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expectations in selecting the equilibrium schedule. In light of the results of Section 2, we

allow the sunspot to take two values—st ∈ {sG, sB}—which select a good schedule (low-

rate) or bad schedule (high-rate), when more than one schedule is possible. We allow the

sunspot to follow a two-state Markov process. However, in our numerical exercises, we

will assume that st is i.i.d. and that the bad sunspot occurs with probability pB. The

value of pB captures how pessimistic/optimistic the beliefs of lenders are. As we show in

the quantitative results of Section 5, the value of pB has substantial effects on the interest

rate schedule as well as behavior of spreads and debt issuance.

Default cost and re-entry.—Default entails two costs for the sovereign. First, the

sovereign remains temporarily excluded from financial markets. Second, a fraction of the

endowment, 1 − ϕt, is lost. As is customary in the literature (see Arellano, 2008), we

allow for the fraction ϕt to depend on the exogenous state gt ∈ {gL, gH}. Thus, while in

default, the resource constraints are

Ct = ϕtYt, (14)

with ϕt = ϕ(gt).

While in default, the option to re-enter credit markets happens with probability 1−
θ. If the sovereign chooses to re-enter, the output loss, 1− ϕt, is lifted and the sovereign

regains access to international financial markets. In addition, the service of the debt is

resumed, but a fraction 1 − κ of payments is forgone. Thus, lenders recover a fraction

κ of the outstanding debt. A sovereign that defaulted in a period with promised debt

service B will then face a debt service κB upon re-entry, and future debt payments will

evolve as in equation (10).

Values of default and no-default.—Let V nd(B,Γ−, g, s, ϵ) and V d(B,Γ−, g, s, ϵ) be the

maximal attainable values of no-default and default, respectively, to a sovereign who

starts this period with debt service B, accumulated trend growth Γ−, current growth g,

sunspot s, and output shock ϵ. The value of no-default is

V nd(B,Γ−, g, s, ϵ) = max
N,C

{
C1−γ

1− γ
(15)

+ βE
[
max

{
V nd(B′,Γ, g′, s′, ϵ′), V d(B′,Γ, g′, s′, ϵ′)

}
|Γ−, g, s

]}
s.t.

C +B = Y +N,

B′ = (1− δ)B +R(N,B,Γ−, g, s)N,

Y = Γeσϵ, Γ = gΓ−,

N ≤ N̄(B,Γ−, g, s).
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The borrowing limit N̄(·) is important in our environment. Since the borrower receives

a unit of consumption for every unit of debt issued, default could always be postponed

by issuing more debt. This possibility is ruled out by imposing a maximum amount of

debt. In practice, we set N̄(·) so that the probability of default next period is never

larger than 65%.8

The value of default is

V d(B,Γ−, g, s, ϵ) =
C1−γ

1− γ
+ βE

[
θV d(B′,Γ, g′, s′, ϵ′) (16)

+ (1− θ)max
{
V nd(κB′,Γ, g′, s′, ϵ′), V d(B′,Γ, g′, s′, ϵ′)

}
|Γ−, g, s

]
s.t.

C = ϕ(g)Y,

B′ = B,

Y = Γeσϵ, Γ = gΓ−,

where 1− ϕ is the fraction of output lost upon default. While in default, the service of

the debt is suspended. If the sovereign has the possibility to re-enter financial markets

and decides to do so, only a fraction κ of the debt service is resumed next period.

Let C(B,Γ−, g, s, ϵ) and N′(B,Γ−, g, s, ϵ) denote the optimal consumption and debt

issuance policies when in no-default, andB′(B,Γ−, g, s, ϵ) be the implied debt service next

period. Similarly, letD(B,Γ−, g, s, ϵ) denote the optimal default policy, andE(B,Γ−, g, s, ϵ)

denote the optimal re-entry policy while in default. The optimal policies for D(·) and

E(·) are given by

D(B,Γ−, g, s, ϵ) =

{
0 if V nd(B,Γ−, g, s, ϵ) ≥ V d(B,Γ−, g, s, ϵ),

1 otherwise.
(17)

E(B,Γ−, g, s, ϵ) =

{
1 if V nd(κB,Γ−, g, s, ϵ) ≥ V d(B,Γ−, g, s, ϵ),

0 otherwise.
(18)

Pricing of debt.—We assume a continuum of risk-neutral lenders with deep pockets

that discount future payments at rate r∗. Let Z = (Γ−, g, s, ϵ) collect all the exogenous

terms in the economy. Let Q(B,R,Z) be the beginning-of-period (before default deci-

sions) value of a bond that promises R upon issuance, and let X (B,R,Z) be the value

8Similar formulations for a borrowing limit can be found in Chatterjee and Eyigungor (2015) and
Hatchondo et al. (2016).
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of such a bond in default. Then, Q(·) and X (·) are given by

Q(B,R,Z) = [1−D(B,Z)]

[
R +

1− δ

1 + r∗
E
[
Q (B′(B,Z), R, Z ′) |Γ−, g, s

]]
(19)

+D(B,Z)X (B,R,Z),

X (B,R,Z) =
1

1 + r∗
E

[
θX (B,R,Z ′) + (1− θ) [1− E(B,Z ′)]X (B,R,Z ′) (20)

+ (1− θ)E(B,Z ′)Q(κB, κR,Z ′)|Γ−, g, s

]
,

where equation (20) incorporates that B remains constant during default episodes.

The value of the bond under no default Q(·) is standard: if the sovereign doesn’t

default (D(·) = 0), R is paid this period and the remaining fraction 1 − δ has a next-

period value given by Q(·)—evaluated at the next period debt service B′(·). Notice that,

while there is no default, R remains unchanged. The value of the bond in default X (·)
reflects the two possible cases the sovereign will face next period. In the first case, the

sovereign remains in default, either because it doesn’t have the chance to re-enter financial

markets or because it decides not to do so (E(·) = 0). In this case, the value of the bond

is still given by the function X (·). In the second case, the sovereign—with probability

1 − θ—has the chance to re-enter financial markets and decides to do so (E(·) = 1). In

this case, the lender only recovers a fraction κ of R, but the price of the bond also reflects

that the sovereign only has to repay a fraction κ of its former liabilities, which is why the

price Q(·) is evaluated at κB′ and κR at the end of equation (20).

Bond price satisfies Q(B,R,Z) = RQ(B, 1, Z) and X (B,R,Z) = RX (B, 1, Z).9 This

is an intuitive result: a bond, with an arbitrary payment R, pays, in every state of nature,

R times what a bond with a payment of 1 does. Since lenders are risk-neutral, the price of

any bond is thus a multiple of the price of a bond with R = 1. Thus, with a slight abuse

of notation, let Q(B,Z) = Q(B, 1, Z) be the price of a bond with R = 1. Consequently,

the schedule R(N,B,Γ−, g, s) must satisfy

1 =
R(N,B,Γ−, g, s)

1 + r∗
E [Q(B′,Γ, g′, s′, ϵ′)|Γ−, g, s] , (21)

B′ = (1− δ)B +R(N,B,Γ−, g, s)N. (22)

By our normalization, the bond price on issuance—the left-hand-side of equation (21)—is

one. Then, for each level of issuance N , R(·) adjusts endogenously so that the sovereign

receives one unit of consumption for each newly issued bond.

9Formally, it can be shown that, for any λ > 0, equations (19) and (20) admit a solution with
Q(B, λR,Z) = λQ(B,R,Z) and X (B, λR,Z) = λX (B,R,Z). The normalization of the price comes
from setting λ = 1/R. See Appendix C for a formal proof.
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Equations (21) and (22) are the analog to equation (3) in the simple two-period

model, and can be used to discuss the intuition behind the multiplicity results. If lenders

coordinate on a high R, this leads—given an issuance N—to a higher B′ via equation

(22). In turn, a higher B′ implies a higher probability of defaulting in the future. That

means a lower (expected) Q next period, which justifies the higher R in equation (21).10

The sunspot captures the role of expectations in selecting the equilibrium interest

rate schedule in equations (21)–(22). For the same reasons as discussed in Section 2,

the relevant parts of the interest rate schedule are those increasing on issuance. The

two increasing interest rate schedules are selected using the same approach as in Section

2. The high-rate schedule corresponds to the highest interest rates for each level of debt,

and the low-rate schedule corresponds to the lowest rate.

Equilibrium.—We can now formally define an equilibrium for this economy.

Definition 1 (Equilibrium). An equilibrium is a set of value functions {V d(B,Γ−, g, s, ϵ),

V nd(B,Γ−, g, s, ϵ)}, policy functions C(B,Γ−, g, s, ϵ), N(B,Γ−, g, s, ϵ), default and re-

entry functions D(B,Γ−, g, s, ϵ), E(B,Γ−, g, s, ϵ), functions Q(B,Γ−, g, s, ϵ), X (B,Γ−, g, s, ϵ)

and R(N,B,Γ−, g, s) such that:

(i) the policy functions solve the sovereign’s problem in equation (15) and achieve value

V nd(B,Γ−, g, s, ϵ);

(ii) the value function V d(B,Γ−, g, s, ϵ) satisfies equation (16);

(iii) default and re-entry policies are as in equations (17) and (18);

(iv) functions Q(B,Γ−, g, s, ϵ) and X (B,Γ−, g, s, ϵ) satisfy equations (19) and (20);

(v) the schedule R(N,B,Γ−, g, s) satisfies equation (21) with B′ and N as in equation

(22).

3.2 Model normalization

Since the endowment process has a trend, the state variables in the model are non-

stationary. For computational purposes, we normalize all non-stationary variables by

trend growth Γ−. This requires showing homogeneity properties of the equilibrium func-

tions, similarly to what was done in Aguiar and Gopinath (2006). We leave the detailed

derivation to Appendix C and proceed to present the detrended model.

For any variable Xt, we denote xt = Xt/Γt−1 as the detrended value. Let vnd(b, g, s, ϵ)

and vd(b, g, s, ϵ) be the detrended values of no-default and default, respectively. The value

10Equations (21) and (22) show that the actions available to the borrower also matter. If the borrower
could directly choose next-period debt service B′, equation (21) would determine R(·), and a unique
corresponding issuance N would then arise from equation (22). See Ayres et al. (2018) for a detail
discussion on how timing and actions lead to multiple equilibria in models of default.
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of no default is

vnd(b, g, s, ϵ) = max
c,n

{
c1−γ

1− γ
+ βg1−γE

[
max

{
vnd(b′, g′, s′, ϵ′), vd(b′, g′, s′, ϵ′)

}
|g, s

]}
,

s.t.

c+ b = y + n, (23)

gb′ = (1− δ)b+R(n, b, g, s, ϵ)n,

y = geσϵ

n ≤ n̄(b, g, s).

where R(·) is the schedule for the detrended variables, as discussed below.

Similarly, the value of default becomes

vd(b, g, s, ϵ) =
c1−γ

1− γ
+ βg1−γE

[
θvd(b′, g′, s′, ϵ′) (24)

+ (1− θ)max
{
vnd(κb′, g′, s′, ϵ′), vd(b′, g′, s′, ϵ′)

}
|g, s

]
,

c = ϕ(g)y,

gb′ = b,

y = geσϵ.

The schedule offered by foreign lenders is given by

1 =
R(n, b, g, s)

1 + r∗
E [Q(b′, g′, s′, ϵ′)|g, s] , (25)

gb′ = (1− δ)b+R(n, b, g, s)n, (26)

where the price Q(·) satisfies

Q(b, z) = [1− d(b, z)]

[
1 +

1− δ

1 + r∗
E [Q (b′(b, z), z′) |z]

]
+ d(b, z)X(b, z), (27)

X(b, z) =
1

1 + r∗
E

[
θX (b′, z′) + (1− θ) {[1− e (b′, z′)]X (b′, z′) + e (b′, z′)κQ (κb′, z′)} |z

]
,

(28)

where z = (g, s, ϵ) collects the stationary exogenous states, b′(·) in equation (27) is the

next period payment implied the optimal issuance policies in equation (23), and where
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b′ = b/g in equation (28). The default and re-entry policies, d(·) and e(·), are given by

d(b, g, s, ϵ) =

{
0 if vnd(b, g, s, ϵ) ≥ vd(b, g, s, ϵ)

1 otherwise
, (29)

e(b, g, s, ϵ) =

{
1 if vnd(b, g, s, ϵ) ≥ vd(b, g, s, ϵ)

0 otherwise
. (30)

4 Calibration

We consider two calibrations of the model, one representing the Southern European

experiences, with a focus on Spain, and a second one representing the South American

experiences, with a focus on Argentina.

Except for the sunspot probability, we calibrate all parameters using standard values

in the literature or matching those parameters directly with data, as we explain in de-

tail below. We cannot do this with the sunspot probability since the parameter is, by

definition, arbitrary.

We assume the bad sunspot occurs with probability pB and use two values for it, one

corresponding to pessimistic expectations, and the other to optimistic expectations. We

calibrate the case of Spain with a low probability of the bad sunspot, pB = 1%, reflecting

optimistic expectations. The case of Argentina, instead, is calibrated with a high value

for the probability of the bad sunspot, pB = 25%. Given these choices for the sunspot

probability, we then calibrate the costs of default using data on total debt and on spreads

for each of the two countries, as is customary in the sovereign default literature.

It is worth emphasizing that we explored numerically a wide range of values for pB

between 1% and 50%. The results showed that there is a threshold, around 10% for

Argentina and 15% for Spain, such that, for all values below the threshold, the results

are very similar to the case of 1%, while for the values above the threshold, the results

are very similar to the case of 25%.

We explore the extent to which changing the value of pB alters the equilibria of the

model. In particular, we compute equilibria for both economies assuming the alterna-

tive value of the sunspot probability—that is, switching to optimistic expectations for

Argentina and to pessimistic expectations for Spain. If expectations did not matter,

the outcome should be invariant to pB. As we show below, the sunspot does matter

substantially in both cases.

Common parameters:

A period in the model is one year. We set the annual risk-free rate to r∗ = 3.5%. The

discount factor is set to β = 0.75, as is standard in the literature, so that the borrower is

impatient enough that borrowing and default are equilibrium outcomes. Arellano (2008)

and Chatterjee and Eyigungor (2015) use quarterly discount factors of 0.95 and 0.94,
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respectively, which imply annual discount factors of 0.82 and 0.77, close to the value we

chose.11 The borrower’s risk aversion coefficient is γ = 3. This value is between the ones

used by Arellano (2008), γ = 2, and Bianchi et al. (2018), γ = 3.3. Finally, the recovery

rate is set to 75% (κ = 0.75), in line with the estimates in Cruces and Trebesch (2013).12

Country-specific parameters:

We use data to discipline the parameters that govern the output process, and the

value of δ, which pins down the average maturity of the debt.

For Argentina, we set the average maturity of debt equal to 2.5 years, δ = 0.4, close

to the average maturity prior to default in 2001. For Spain, we set the average maturity

of debt equal to 6.7 years, δ = 0.15, also close to the average value prior to the debt

crisis.

The endowment process in equations (7) and (8) is a regime-switching process charac-

terized by five parameters {gL, gH , σ, pL, pH}. To calibrate these parameters, we estimate

the endowment process using the filter proposed in Kim (1994).13 We use annual GDP

per capita data from The Conference Board Total Economy Database for the period 1980

to 2017 and estimate the process separately for five countries: Argentina, Brazil, Italy,

Portugal, and Spain.14 We start in 1980 to avoid the high growth rates of the period

of convergence in the 1960s and 1970s. We assume bounded uniform priors for the five

parameters and explore the posterior using a Metropolis-Hastings Markov Chain Monte

Carlo (MCMC) algorithm. Table 1 shows the estimates for all countries. As in the

model, the estimation assumes the same standard deviation of shocks, σ, across the two

growth states. In Appendix A, we also estimate the process allowing for state-dependent

σ and find they are similar across states.

Two things are worth mentioning regarding the estimates in Table 1. First, the

estimates show clear evidence of a bimodal distribution for output growth in all coun-

tries. The average across countries of the difference between gH and gL is 6 percentage

points, more than three times the standard deviation of the transitory shock. The differ-

ence between gH and gL is a key ingredient for expectations to play a role.15 Second, both

the low- and high-growth states are persistent (between 60% and 80% persistence). As

we show below, this relatively high persistence for the low-growth state generates high

11Aguiar and Gopinath (2006) use a quarterly discount factor of 0.8, which corresponds to 0.41 annu-
ally. On the other hand, Aguiar et al. (2016) use annual discount factors between 0.84 and 0.89.

12The haircut estimates in Cruces and Trebesch (2013) vary from 16% to 40%, corresponding to values
of κ between 0.84 and 0.60. We perform sensitivity analysis for different values of κ in the Appendix E.

13We do not use the filter in Hamilton (1989) directly because output growth has a moving average
component. We use the filter in Kim (1994) instead. See Appendix A for details.

14In studying the European experience, we do not include Ireland and Greece in order to concentrate
on a relatively homogeneous group of countries.

15To reduce the dimensionality of the state, the output innovation in the model is i.i.d. One potential
concern is that the estimation detects two different regimes as an approximation to a one-regime but
persistent process for the growth rate of output. This is not the case: we repeated the estimation assuming
an AR(1) process for the innovation and find a statistically and economically significant difference in the
growth rates across regimes is estimated also in that case.
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Table 1: Prior and posterior distributions

ln (gL) ln (gH) pL pH σ

Prior distribution

U [−0.1, 0.1] U [−0.1, 0.1] U [0.1, 1.0] U [0.1, 1.0] U [10−3, 0.5]

Posterior distribution
Countries (mean, and 5th to 95th percentile intervals)

Italy -0.017 0.022 0.646 0.843 0.016
[-0.037,-0.008] [0.018,0.028] [0.050,0.990] [0.627,0.990] [0.012,0.023]

Portugal -0.002 0.048 0.805 0.720 0.019
[-0.011,0.003] [0.041,0.057] [0.516,0.990] [0.454,0.939] [0.014,0.025]

Spain -0.018 0.033 0.629 0.838 0.017
[-0.026,-0.010] [0.026,0.039] [0.308,0.990] [0.653,0.990] [0.013,0.025]

Argentina -0.040 0.060 0.620 0.581 0.033
[-0.049,-0.022] [0.051,0.078] [0.346,0.877] [0.358,0.781] [0.025,0.044]

Brazil -0.033 0.029 0.589 0.793 0.019
[-0.071,-0.022] [0.025,0.032] [0.103,0.860] [0.627,0.923] [0.014,0.025]

Note: For each country, we estimate an output process as: ∆ ln yt = ln gt + σ(ϵt − ϵt−1), in which ϵt ∼ N(0, 1) and

gt ∈ {gL, gH}, with Pr(gt+1 = gL|gt = gL) = pL and Pr(gt+1 = gH |gt = gH) = pH . The table reports the mean and the

interval between the 5th and 95th percentiles of the posterior distributions of each of the parameters for each country.

The table also reports the prior distributions we used, which were chosen to be the same across countries. For each

country, we use data on GDP per capita in 2016 US$ (converted to 2016 price level with updated 2011 PPPs) between

1980 and 2017 from The Conference Board Total Economy Database as the measure of yt. See Appendix A for a

description of the estimation.
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Table 2: Benchmark calibration

A. Parameters that are common across regions

Description Parameter Value

discount factor β 0.75

risk aversion γ 3.0

risk-free rate R∗ 1.035

re-entry probability 1− θ 0.10

fraction of debt recovered after default κ 0.750

B. Parameters that vary across regions

Description Parameter Argentina Spain

inverse of average maturity δ 0.40 0.15

probability of remaining in low growth pL 0.600 0.629

probability of remaining in high growth pH 0.750 0.838

low-growth rate ln (gL) -0.033 -0.018

high-growth rate ln (gH) 0.029 0.033

standard deviation of transitory shock σ 0.019 0.017

default cost in high growth state ϕ(gH) 0.90 0.945

default cost in low growth state ϕ(gL) 0.99 0.935

probability of bad sunspot pB = 1− pG 0.25 0.01
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but plausible interest rates in the low-growth state.

Table 2 also suggests differences between the Southern European and the South-

American countries, the most notable one is that the difference between gH and gL is

substantially smaller in Europe. Another difference is that the volatility of the distur-

bance appears to be higher in South America.

When comparing within regions, there is substantial homogeneity in Europe. We

therefore chose to use the point estimates for Spain, pL = 0.629, pH = 0.838, ln (gL) =

−0.018, ln (gH) = 0.033, and σ = 0.015.

In contrast, in South America there are substantial differences between Brazil and

Argentina. Most notably, the difference between gH and gL and the volatility of the

shock are much higher in Argentina, while the persistence of the high-growth state is

much lower. These differences most likely reflect the fact that the data from Argentina

incorporate several episodes of default, so the data represents a combination of the true

structural parameters, combined with the costs of default, which are calibrated separately.

To be conservative, we use a calibration closer to the estimates for Brazil and set

pL = 0.60, pH = 0.75, ln (gL) = −0.33, ln (gH) = 0.029, and σ = 0.019. These values, with

the exception of gH , are within the 90% confidence interval of the posterior distributions

of Argentina. The value we pick for gH is considerably lower than the point estimate

for Argentina. We would like to emphasize that choosing a lower value for gH makes

the case for multiplicity harder. Recall that in the simple two-period model discussed

above, a higher distance between gH and gL increases the region of multiplicity.16 Table

2 contains the parameter values that we use in the quantitative analysis.

When comparing Argentina to Spain, the two calibrations capture the fact that South

American countries have lower average debt maturity, deeper recessions, less persistent

periods of high growth, and more volatile output growth and fluctuations overall.

We assume the sunspot follows an i.i.d process and denote pB the probability of the

bad sunspot. As discussed before, the calibration for Argentina uses pB = 25% while the

calibration for Spain uses pB = 1%.

Finally, we use data on debt levels and spreads over the risk-free rate to calibrate the

costs of default for each country. As is standard in the quantitative sovereign default

literature, following Arellano (2008), default costs are asymmetric. We choose the values

so that the average stock of debt in the simulations are close to their debt position the

years before entering the crisis period, and the spreads are close to the ones observed

before the economy transitions from high to low growth.17

Regarding debt levels, for Spain, we use the measure of net international investment

position from Banco de España, which averaged 92% between 2008 and 2012. For Ar-

16Appendix E shows comparative statics with respect to the distance between gH and gL.
17We match average debt levels in the high-growth state, since we want to think of debt crisis periods

as being triggered by transitions from high- to low-growth states.
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gentina, most foreign assets were reserves held at the central bank, which were earmarked

to back the monetary base at the time, due to the currency board. Therefore, we decided

not to subtract these reserves from the gross measure of the debt. We use Argentina’s

gross external debt from the World Bank’s International Debt Statistics, which averaged

52% between 1997 and 2001. See Appendix B for details on data sources and computa-

tions.

As pointed out by Dias et al. (2014), existing measures of debt for Argentina and Spain

are not comparable. The key difference is that while the data for Spain are calculated

using market prices, the data for Argentina corresponds to face values of the outstanding

bonds. To go around these discrepancies between countries, we measure both the market

value and the face value of debt in the model. The market value is Qb/δ, with Q defined

in equation (27). The face value is the undiscounted sum of principal payments due in

the future, Ft ≡ Nt−1 + (1 − δ)Nt−2 + (1 − δ)2Nt−3 + ... We denote its detrended value

by ft. We then use the market value in the model to calibrate the case of Spain and the

face value in the model to calibrate the case of Argentina.

Finally, we target about 0% spreads for Spain and 8 percent for Argentina, which

correspond to the averages for the years before their respective crises.18 These are the

spread numbers we obtain in the high-growth schedules, as we report in Figures 6 and 8

below. The calibrated default costs are reported in Table 2.

In Section 5, as well as in the Appendix E, we perform sensitivity analysis for many

of the parameters described above, and show that the conclusions are reasonably robust

to alternative parameter values.

Model computation The computation of the model has to take into account that

there are multiple interest rate schedules satisfying equations (25) and (26). That in-

cludes schedules that are decreasing in the level of debt, which we rule out (Ayres et al.,

2015). That is, the model computation must select schedules out of potentially several

possible equilibrium schedules. The infinite-horizon nature of the model introduces an

additional complexity because the selection of schedules affects value functions which in

turn affects the schedules. To overcome this issue, we develop an algorithm that iterates

only on the value function and that, in each iteration, computes the respective interest

rate correspondence, selecting the high and low interest rate schedules as a function of

the sunspot. Appendix D contains more details on the algorithm used to compute the

equilibrium.

18For Spain, spreads were essentially zero most years before the Lehman crisis. In contrast, spreads
for Argentina varied substantially during 1998, ranging from 4% to 12% and hovering around 8% during
the last months of the year.
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5 Quantitative results

We present two main results. We first show that for both calibrations there are

multiple interest rate schedules for the values for the debt service that Argentina faced in

2001 and Spain faced in 2012. This suggests that expectations may have played a role in

triggering debts crises in both economies. The second set of results uses the simulation

of the calibrated economies. We assess the relevance of the sunspot for the moments of

the simulated economies, in particular for spreads, default rates, and debt levels.

The model calibration for Argentina generates equilibrium paths that resemble the

events the country experienced in 2001. The sunspot probability plays a crucial role in

generating those paths. In contrast, while the Spain calibration exhibits multiplicity for

its 2012 debt service levels, the sunspot induces a strong endogenous austerity response,

such that expectations-driven high spreads are not observed in equilibrium.

Recall that, as a benchmark, we set pB = 1% for Spain, reflecting optimistic expecta-

tions, while we set pB = 25% for Argentina, reflecting pessimistic expectations. Beyond

expectations, there are three differences between the Argentina and Spain calibrations, all

of them disciplined by data: the endowment process, the default costs, and the maturity

of the debt. As it turns out, the difference in expectations is the major driver explaining

differences in default probabilities and spreads between Spain and Argentina.

In what follows, we start by discussing the schedules for the two calibrated economies

and then proceed to discuss both simulated economies.

5.1 Multiplicity of interest rate schedules: Argentina

Here we explore the calibration for Argentina, focusing on the sovereign debt crisis

of 2001. By January 2001, sovereign debt spreads in Argentina were roughly 8%. From

1994 to 1998, the Argentine economy grew at high rates, close to 6% a year. By the end

of 1998, a recession started, lasting until 2002. This can be interpreted as a regime switch

from the high- to the low-growth state. Argentina defaulted on its debt in December

2001, after a couple of months with spreads that averaged around 30%.

In Figure 6, we plot the interest rate schedules for the low- and high-growth states,

for debt service levels of 20% of GDP, close to what Argentina had in 2001 at the onset of

the crisis.19 The horizontal axis has the new debt issuance, n, while the vertical axis has

the corresponding interest rate spreads.20 For each growth state, the sunspot realization

determines whether the high or low interest rate schedule is selected, in the region of

multiplicity. The (blue) dashed line corresponds to the high-growth state, while the

(red) solid line corresponds to the low-growth state. As discussed above, the Argentina

19Debt services in 2000 for Argentina equaled 19.6% of GDP, based on World Bank’s International
Debt Statistics. See Appendix B for more details on data sources and computations.

20Interest spreads are ρ− r∗, where ρ is the interest rate on new issuance as defined in equation (12).
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Figure 6: Interest rate spreads for Argentina (b = 20%)
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calibration was chosen to match an 8% spread in the high-growth schedule, similar to

what the country faced during the high-growth years before the crisis.

The size of the multiplicity region is state-dependent, as Figure 6 shows. In the high-

growth state (dashed blue line), the region of multiplicity is small, so that the schedules

are similar under the good and bad sunspot. Instead, in the low-growth state (solid red

line), interest rates can be either low or high, depending on the sunspot, for a larger set

of issuance levels. In the low-growth state, there is multiplicity of schedules for issuance

between 14% and 18% of output. For these levels of debt issuance, the low spread is

around 12%. But there is also a high spread close to 30%. When expectations are good,

the borrower can issue up to 18% of trend GDP under the lower 12% spread. Borrowing

only 18% when the debt service is 20%, as in Figure 6, implies a surplus of 2%. On the

other hand, the country can only issue up to 14% with low spreads if expectations are

bad. This means that a surplus of 6% of GDP is needed under the bad sunspot in order

to maintain the lower spreads. Thus, under bad expectations, a much larger surplus

adjustment is needed in order to obtain a low spread.

A noticeable feature of Figure 6 is that the high spreads resemble the ones for Ar-

gentina around the 2001 debt crisis. Spreads in Argentina went up to close to 30% during

the last two months of 2001. This number was not targeted in our calibration.

In this model, expectations play a significant role when fundamentals—the growth

rate of the economy—are weak. The reason for this state-dependent role of expectations

is the following. In periods of low growth, the probability of observing low growth in the

future is high, due to the high persistence of the growth shock. Thus, if the borrower is

expected to default in the low-growth state, which has a sizable probability, the interest

rate must be high. This high interest rate will, in turn, induce the borrower to default

in the low-growth state, confirming the expectations. This will happen even for low

debt levels. If the borrower is not expected to default in the low-growth state, however,
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the interest rates will be relatively low, and the borrower will be able to issue a larger

amount of debt without risking default next period. This translates into a large region

of multiplicity, in which for intermediate levels of debt, interest rates can be either high

or low depending on expectations.

In contrast, persistence implies that in periods of high growth, the probability of

switching to low growth is low. Thus, even if the borrower is expected to default in the

low-growth state, the interest rate consistent with these expectations will be low, since the

probability of the low-growth state is low. Expectations will be confirmed, meaning that

the borrower will default in the low-growth state, but only when debt levels are relatively

large. If the borrower is not expected to default in the low-growth state, however, the

interest rates are only marginally lower, and the debt levels such that the borrower will

not default are not much higher. This translates into a small region of multiplicity.

The probability of switching to the low-growth state in the infinite-horizon model is

the analog of the probability of the low endowment in the two-period model of Section

2. When that probability is low, the region of multiplicity is small, whereas when that

probability is high, the region of multiplicity is large. In the infinite-horizon model, the

probabilities are functions of the state. In low-growth states, the probability of future

low growth is high, and the region of multiplicity is large. In high-growth states, that

probability is low, and the region of multiplicity is small.

In what follows, we show how the schedules change as we vary key parameters of

the model. We restrict the analysis to the schedules for interest rate spreads in the low-

growth state, since that is when multiplicity is more prevalent, as discussed above. Given

the focus of our analysis, we are particularly interested in the effects of changing the

probability of the sunspot, the debt service, and the average maturity. A full set of

robustness results is presented in Appendix E.

The role of the sunspot We compute the schedule setting the probability of the

bad sunspot to pB = 1%, rather than pB = 25% as used for the benchmark.21 The

schedule for this case, when the growth rate is low, is depicted in Figure 7a (black dashed

line) together with the one corresponding to the benchmark (red solid line).

The effect of the change in pB is striking. If the probability of the bad sunspot was

very low, the country would have faced zero spreads even if it were to issue new debt up

to almost 25% of GDP. In our narrative, this implies that, with optimistic expectations,

Argentina could have been able to borrow to service the debt plus a few extra points

of GDP and still be well within the debt choices that essentially rule out default, which

explains the zero spread.

21As mentioned above, we have solved the model for several values of the probability of the bad
sunspot, pB , between 0% and 50%. The solution essentially depends on its value being above or below
a threshold close to 10%. For values below the threshold, the results are very similar to the case of
pB = 1%, while for values above the threshold, the results are very similar to pB = 25%.
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Figure 7: Interest rate spreads for Argentina in the low growth state (b = 20%): Com-
parative statics
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The role of the inherited debt We now show the effects of the inherited debt ser-

vice b in Figure 7b. The solid red line is the same one depicted in Figure 6, corresponding

to the benchmark. The black dashed line corresponds to a debt service of b = 15%. As

the figure shows, it is possible to roll over a debt service of 15% with a single low interest

rate. Only if the government attempts to borrow another 4% of output, for a total of

19%, will multiplicity potentially matter.

The role of average maturity To assess the role of the average maturity δ, Fig-

ure 7c reproduces the schedule for the benchmark calibration, together with the ones for

either higher or lower average maturity. As before, we only show the schedules for the

low-growth state where multiplicity is quantitatively relevant. We change the average

maturity but keep total debt constant, so that the service of the debt, b, changes accord-

ingly. Together with the case of the benchmark average maturity of two and a half years,

plotted in Figure 6, we also plot the cases of maturity of 6.7 years (δ = 0.15) and 1.7

years (δ = 0.6).

The maturity of debt presents a tradeoff. As the maturity increases, the incentive to

dilute the debt is higher, which pushes spreads up. On the other hand, given a total level

of debt, the current debt services are lower the longer the maturity. Thus, as Figure 7c

shows, the schedule increases with higher maturity, but as the debt services are lower,

for a given deficit, there is a movement within the schedule to the left, away from the

multiplicity region. For example, with a 50% debt-to-output ratio and δ = 0.15, only

7.5% of output needs to be serviced every period. That value is comfortably below the

region of multiplicity. Thus, while the interest rate is higher for any given level of debt,

according to the model a higher maturity could have kept Argentina away from a crisis,

even with positive but mild deficits.

The case of a shorter maturity, of 1.7 years (δ = 0.60), is quite different. The spreads

are much lower than in our benchmark. It is so much so that the spread is zero, even for

new debt issuance as large as 30% of output. This is quite remarkable, since it implies

that longer maturities do not necessarily translate into better financing conditions. The

interpretation is that, for the short maturity, debt dilution incentives are minor.22 This

effect, combined with a level of debt that is not very high, implies that there is almost

no default in equilibrium. This example highlights the interaction between incentives to

default down the road and the maturity structure. A longer maturity is good, since it

does not require a high fraction of the debt to be rolled over in a single period. On the

other hand, it makes the debt dilution problem more acute. And the two effects feed

back into each other: as the average maturity goes up, the debt dilution problem implies

higher rates, which in turn imply a higher burden for the debt and higher incentives to

22See Chatterjee and Eyigungor (2012) and Aguiar et al. (2019).
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default. And this higher probability of default makes the debt dilution more severe.23 For

the short average maturity we are considering, the reversion of this feedback is so strong

that default becomes an almost impossible event, making the debt dilution component

of the spread vanish. One could be tempted to conclude that short maturity debt has

attractive features from a policy standpoint. However, the size of the implied debt dilution

spread in this family of models is counterfactual. Thus, we believe these implications

ought to be taken with caution. For a discussion on this issue, see Aguiar and Amador

(2020) and chapter 7 in Aguiar and Amador (2021).

5.2 Multiplicity of interest rate schedules: Spain

We now explore the calibration for Spain. Before the crisis, Spain was in the high-

growth regime and the spread was essentially zero. Following the 2009-10 recession,

growth was dismal, which we interpret as the-low growth regime. Spreads went up

steadily to levels higher than 6% by July 2012, when the ECB announced a policy inter-

vention. Spreads then fell consistently to reach 1% by 2014.

In Figure 8, we plot the interest rate schedules for both the low- and high-growth

states. In contrast to Argentina, we don’t have direct data on Spain’s debt services due

each year. However, we can impute debt services using data on short and long debt,

interest payments, and the maturity structure.24 For 2011 we obtain an average debt

service relative to GDP of b = 15%, the value we use to plot Spain’s schedules. As

discussed above, the Spain calibration was chosen to match a spread of essentially zero

in the schedule corresponding to the high growth state.

For the low-growth state, for debt issuance levels between 17% and 22% of output, in-

terest rates can be either low or high depending on the sunspot, as Figure 8 shows. When

expectations are good, the borrower can issue new debt up to 23% of trend GDP under

the lower interest rate spread. In contrast, when expectations are bad, the borrower can

only issue up to 17% of trend GDP under the lower spreads. This means that, given a

debt service of 15%, there is multiplicity of spreads for deficits of 2% to 8%. The deficits

Spain experienced in the years before the debt crisis belong to those intervals.

Figure 8 supports a narrative regarding the debt crisis in Spain consistent with multi-

ple equilibria. By 2009, Spain had entered the low-growth regime, so the relevant schedule

is the red one in Figure 8. While expectations were good, Spain could run deficits, with

a low spread. Eventually, the bad sunspot realizes and spreads jump up. As Figure 8

shows, the difference between the high and low interest rate spreads in the multiplicity

region—which has not been calibrated—is about 7%. This difference in spreads is very

similar to the maximum spread observed in Spain (slightly above 6%).

23This feedback has been shown to generate multiple equilibria by Lorenzoni and Werning (2019) and
Aguiar and Amador (2020).

24See Appendix B for details.
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Figure 8: Interest rate correspondence for Southern Europe (b = 15%)
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The narrative for Spain is partially confirmed by the analysis of the simulated econ-

omy, as we discuss below. Endogenous austerity plays a key role, avoiding the high

spreads, so that the economy does not borrow at expectations-driven high rates in equi-

librium.

The role of the sunspot The benchmark for Spain assumes a low sunspot prob-

ability, at pB = 1%. We now explore the effect of increasing the sunspot probability to

pB = 25%, as in the benchmark for Argentina. Figure 9a plots the schedule under the

low-growth state for both pB = 1% and pB = 25%.

As with Argentina, the value of pB substantially changes the interest rate sched-

ules. With more pessimistic expectations, spreads increase sharply and Spain’s capacity

to borrow is substantially reduced. We show this change in schedules carries its effect on

equilibrium outcomes: had Spain faced the same value of pB as Argentina, spreads and

default rates would have been close to Argentina’s.

The role of the inherited debt The comparative statics with respect to the

initial value of b is similar as in the case of Argentina: the schedule shifts to the left as

the debt services b increase. However, we think it’s interesting to consider in detail the

counterfactual in which, rather than starting with debt services of b = 15% as in 2012,

Spain starts with debt services of b = 17% as in the ergodic mean of the model (see Table

4 below). Thus, Figure 9b shows the low-growth schedule for a debt service of b = 17%,

together with the benchmark of b = 15% in Figure 8. For the case of b = 17%, the

region of multiplicity occurs for levels of debt issuance between n = 11% and n = 15%

of output, which would involve current account surpluses, since 17% of output must be

rolled over. These numbers imply that because the debt obligations were lower than the

average of the invariant distribution, Spain managed to handle the crisis substantially
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Figure 9: Interest rate spreads for Spain in the low growth state (b = 15%): Comparative
statics
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better and run deficits while expectations were good.

If the probability of the bad sunspot was higher, the country would have faced higher

spreads even for very low levels of debt issuance. In our narrative, this implies that,

with pessimistic expectations, Spain would have only been able to borrow at very high

spreads, regardless of the realization of the sunspot.

The role of average maturity Figure 9c reports the schedules for different levels

of debt maturity δ. The results intuition is as before: shorter maturity ameliorates

the debt-dilution problem and moves the multiplicity region further to the right, while

longer maturity strengthens the debt-dilution problem and increases spreads even for low

issuance levels.

5.3 The simulated economies

We now show the moments of the simulated economy, for both calibrations, and

discuss how they change as we vary the probability of the sunspot.

Argentina Table 3 shows the moments for the simulated economy for Argentina. The

first block lists unconditional first moments. The second and third blocks show first mo-

ments conditional on the growth state. Finally, the fourth block lists unconditional second

moments. The columns represent two different parameterizations of the economy. The

first column shows the moments for the benchmark calibration, and the second column

shows the effect of reducing the probability of the bad sunspot to pB = 1%. All moments

are computed during periods where the country is not in default.

The main takeaway from Table 3 is that the probability of the sunspot plays a crucial

role in driving up average spreads, particularly in the low-growth state, and affecting

borrowing choices. As the sunspot probability goes down from 25% to 1%, default rates

decrease from 5.1% to 0.5%, while spreads decrease from 16.4% to 0.2%. That is, without

any changes in fundamentals, only in beliefs, a borrower mutates from a serial defaulter

to a virtually non-defaulter.

Endogenous austerity and gambling for redemption play a key role in producing the

simulated moments for Argentina. Both can be observed in the behavior of the policy

function for new debt issuance (Figure 10, top panel) and the corresponding spreads

(Figure 10, bottom panel). The left column shows results for the low-growth state, while

the right panel shows results for the high-growth state.

Endogenous austerity is the reason why new debt issuance n declines as the outstand-

ing debt services b increase. Even if outstanding debt services are higher, the borrower

reduces new issuance in order to avoid discrete jumps in interest rates, thus cutting down

consumption sharply. These interest rate jumps depend on future debt services and,
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Table 3: Simulation moments: Argentina

Benchmark (pB = 25%) pB = 1%
First moments (%)

avg(b/y) 30 27

avg(qb/δy) 49 63

avg(f/y) 50 61

avg(n/y) 25 25

avg(tb/y) 5.1 1.9

default rate 5.1 0.5

avg(spread) 16.4 0.2

Low-growth state

avg(b/y) 22 28

avg(qb/δy) 11 65

avg(f/y) 37 63

avg(n/y) 25 23

avg(tb/y) -3.0 4.4

default rate 13.3 1.3

avg(spread) 30.4 0.3

High-growth state

avg(b/y) 30 26

avg(qb/δy) 50 61

avg(f/y) 50 59

avg(n/y) 25 26

avg(tb/y) 5.4 0.4

default rate 0.0 0.0

avg(spread) 15.9 0.2

Second moments

std(spread) (p.p.) 2.9 0.3

std(c)/std(y) (p.p.) 2.9 1.5

Note: b denotes total debt service, qb/δ denotes the market value of debt, f denotes the face value of

debt, n denotes debt issuance, tb denotes trade balance, and y denotes output. We simulate the model

economy for 20,000 periods, exclude the first 1,000 periods, and compute the moments conditional on

not being in default. The default rate is the number of default episodes per 100 periods divided by 100.
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Figure 10: Policy functions and equilibrium spreads for Argentina
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therefore, occur for lower levels of n as b increases—see Argentina schedule in Figure

7b. Gambling for redemption, instead, is the mechanism behind the sharp increases in

new issuance n. The borrower chooses to bear higher borrowing costs in order to increase

consumption and issues further debt in a region where the schedule is largely unresponsive

to a further increase in issuance.

The simulations for Argentina in the benchmark calibration (pB = 25%) visit the

region of debt service levels where spreads are high because of expectations. Both en-

dogenous austerity and gambling for redemption are at play there, resulting in high

equilibrium spreads and default rates, in particular in periods of low growth.

Expectations play a key role: with more optimistic expectations (pB = 1%), en-

dogenous austerity would have prevailed for Argentina, inducing low spreads and default

probabilities, as the second column of Table 3 shows.

The sunspot also significantly affects second moments, as the last rows in Table 3

show. In particular, as pB moves from 25% to 1%, the volatility of spreads decreases by

a factor of 10, while the volatility of consumption halves.
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Spain The moments for the simulated economy for Spain are in Table 4, which is the

analog of Table 3 for Argentina, for the optimistic benchmark (pB = 1%) and for the

case of pessimistic expectations (pB = 25%).

In the low-growth state, the average debt service b is around 16% of GDP. Just rolling

over the debt implies borrowing in the multiplicity region, as Figure 9b shows. Yet, as

Table 4 also shows, spreads in the low-growth state are essentially zero, while default

rates are high. The reason is that more than 99.3% of default episodes occur in high-

growth to low-growth transitions. While in the low-growth state, endogenous austerity

prevails and there are almost no defaults.

This can be seen in Figure 11, which shows debt issuance policies and the correspond-

ing equilibrium spreads. The debt issuance policy function in the low (high) growth state

is depicted in solid red (blue) for the good sunspot and dashed red (blue) for the bad

sunspot. The bottom row in Figure 11 shows the corresponding equilibrium spreads. As

discussed before, endogenous austerity is the reason why issuance n declines as debt

services b increase.

In the low-growth state, the policy function exhibits strong endogenous austerity, with

issuance declining as debt services increase. The realization of the bad sunspot induces

even stronger endogenous austerity. Overall, default rates are close to zero under low

growth, and thus equilibrium spreads are low.

All this implies that while just rolling-over debt services in the low-growth state leads

to borrowing in the multiplicity region, that never happens in equilibrium. Endogenous

austerity keeps the economy below the multiplicity region so that high spreads due to bad

expectations do not happen in equilibrium in the low-growth state. Thus, while there

is multiplicity of spreads for the debt service levels Spain faced in 2012 (Figure 8), the

simulated economy does not give rise to those high spreads.

The actual experience of Spain, and other European countries, was to implement

austerity measures in response to the observed high spreads. In the model, the high

spreads triggering endogenous austerity happen off equilibrium, so they are not observed

in the simulations. Thus, our model is only partially successful in explaining the events

in those countries during the sovereign debt crisis period.

We think that with reasonable/small changes to our model, Calvo-type multiplicity

could still explain the jump in Spain’s spreads in 2012. Note that, as Table 4 also

shows, with pessimistic expectations (pB = 25%), Spain would have faced much higher

spreads in equilibrium, even for low levels of issuance (Figure 9a). We conjecture that

stochastic changes in pB, as in Bocola and Dovis (2019), may induce a rise in spreads

as the result of expectations becoming more pessimistic over time. That is, a gradual

increase in pB could lead to spreads increasing to almost 7%, as observed for Spain

during July 2012. Additionally, beyond utility losses, our model has no costs associated

with sudden declines in consumption, which may be unrealistic for public/government
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Figure 11: Policy functions and equilibrium spreads for Spain
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spending that is typically harder to quickly adjust. Adding such sluggish consumption

responses could lead to a lengthening of the fiscal austerity measures and, thus, to high

spreads in equilibrium.
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Table 4: Simulation moments conditional on not being in default: Spain

Benchmark (pB = 1%) pB = 25%
First moments (%)

avg(b/y) 17 14

avg(qb/δy) 88 53

avg(f/y) 86 52

avg(n/y) 18 12

avg(tb/y) -1.4 1.6

default rate 5.2 6.1

avg(spread) 1.2 7.7

Low-growth state

avg(b/y) 16 12

avg(qb/δy) 80 35

avg(f/y) 84 47

avg(n/y) 17 12

avg(tb/y) -0.9 0.5

default rate 18 20

avg(spread) 0.1 9.7

High-growth state

avg(b/y) 17 14

avg(qb/δy) 89 55

avg(f/y) 86 53

avg(n/y) 18 12

avg(tb/y) -1.5 1.8

default rate 0 0

avg(spread) 1.4 7.5

Second moments

std(spreads) (p.p) 0.7 1.5

std(c)/std(y) (p.p) 2.7 2.3

Note: b denotes total debt service (principal+coupon payments), qb/δ denotes the market value of

debt, f denotes the face value of debt, n denotes debt issuance, tb denotes trade balance, and y denotes

output. We simulate the model economy for 20,000 periods, exclude the first 1,000 periods, and

compute the moments conditional on not being in default. The default rate is the number of default

episodes per 100 periods divided by 100.
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6 Conclusion

In the model of sovereign debt crises of Calvo (1988), there are multiple interest rate

schedules because expectations of high probabilities of default are self-confirming. In

particular, if expectations of default are high, interest rates must be high, and high

interest rates increase the burden of debt, inducing the borrower to default. The question

that remains is whether the source of multiplicity is quantitatively relevant. In particular,

we are interested in determining the role that it may have played in the sovereign debt

crises of Argentina in 2001 and Southern Europe in the early 2010s.

We argue that the mechanism in Calvo (1988) is quantitatively relevant and that key

for multiplicity is a bimodal output process with persistent good and bad times. We

estimate this output process for a set of countries that have recently been exposed to

sovereign debt crises. We show that a sunspot realization can induce discrete jumps in

interest rates even with no change in fundamentals. These expectations-driven jumps

in interest rates can only occur during stagnations. Interest rate jumps, either because

of expectations or fundamentals, can induce either endogenous austerity, in which the

borrower refrains from borrowing to avoid the jump in rates, or gambling for redemption,

in which the borrower increases debt beyond the jump in rates.

We consider two calibrations of the model, one targeted to Argentina and another

to Spain. We show that the Argentine calibration generates equilibrium paths that

resemble the events of the 2001 debt crisis, with credit spreads going up by magnitudes

similar to the observed ones. In the calibration for Spain, expectations-driven high rates

induce austerity measures such as those observed in the early 2010s. As a result of this

endogenous austerity, the high spreads remain off equilibrium for Spain. Endogenous

austerity and gambling for redemption are central in explaining our findings.

A key takeaway of our paper is that expectations, as measured by the sunspot prob-

ability of selecting an interest rate schedule, have a large quantitative effect on model

outcomes. Assuming optimistic expectations for Argentina results in substantially lower

default rates and credit spreads, even with no change in fundamentals. Similarly, assum-

ing pessimistic expectations for Spain results in substantially higher default rates and

credit spreads. Thus, expectations are a major driver explaining default rates and credit

spread differences between Spain and Argentina.
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A Endowment process estimation

In this appendix, we provide more details on the estimation of the GDP process used

in the quantitative evaluation of the model. We use the filter in Kim (1994) to obtain

the likelihood function and explore the posterior using a Metropolis-Hastings MCMC

algorithm with a random walk proposal density.

Let Yt denote the country’s GDP during year t, and let ∆yt = log(Yt) − log(Yt−1)

denote GDP growth. The process in equations (7)–(8) implies

∆yt = gt + σ (ϵt − ϵt−1) (A.1)

where ϵt ∼ N (0, 1), and gt follows a two-state Markov process with transition proba-

bilities pg(g
′|g). Denote gL and gH to the possible values of g: gt ∈ {gL, gH}. The

transition probability is fully summarized by the two parameters pL and pH , where

pL = pg (gt+1 = gL|gt = gL) and pH = pg (gt+1 = gH |git = gH).

Let θ = {gL, gH , σ, pL, pH} collect all parameters determining the process in equa-

tion (A.1). Denote Yt = {∆y0,∆y1, . . . ,∆yt} to be all observations up to period t, and

L(θ|YT ) to be the likelihood of parameters θ where T is the total number of observa-

tions. We construct the likelihood L(θ|YT ) using the filter in Kim (1994).

We assume uniform priors on parameters, which bounds the possible space for θ (see

Table 1). Additionally, we include the normalization of gL ≤ gH as part of our priors. Let

p(θ) denote the prior selection. The posterior of parameters θ is then given by

P(θ|YT ) = L(θ|YT )p(θ) . (A.2)

We explore the posterior P(θ|YT ) using a Metropolis-Hastings MCMC algorithm with

a random walk as a proposal density. In particular, the proposal density is a normal

N (θn−1, σ̄Σθ), where θn−1 is the last draw of the chain, Σθ has θ
∗ = argmaxθ P (θ|YT ) in

its diagonal and zeros otherwise, and σ̄ is selected so that the rejection rate in the chain

is between 60% and 70%. We simulate 10 chains of length 125,000 each and compute

posteriors by pooling 1 out of every 10 draws from the last 100,000 observations in each

chain. Table 1 contains all posterior estimates.

Data are from the Conference Board Total Economy Database, and we used GDP per

capita in 2016 U.S. dollars (converted to 2016 price level with updated 2011 PPPs) as

our measure of output.

Different standard deviations across states We also estimate the endowment pro-

cess for the case in which the standard deviation of the temporary shock depends on

whether the economy is at the low-growth state, gt = gL, or the high-growth state,

gt = gH . We denote the standard deviations in the low- and high-growth states by σL
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Table A.1: Prior and posterior distributions: different σ’s across growth states

ln (gL) ln (gH) pL pH σL σH

Prior distribution

U [−0.1, 0.1] U [−0.1, 0.1] U [0.1, 1.0] U [0.1, 1.0] U [10−3, 0.5] U [10−3, 0.5]

Posterior distribution
Countries (mean, and 5th to 95th percentile intervals)

Italy -0.014 0.026 0.654 0.766 0.020 0.011
[-0.022,-0.008] [0.019,0.030] [0.356,0.974] [0.523,0.990] [0.013,0.031] [0.006,0.020]

Portugal -0.002 0.048 0.790 0.703 0.020 0.018
[-0.011,0.003] [0.040,0.058] [0.503,0.976] [0.403,0.990] [0.012,0.029] [0.011,0.029]

Spain -0.017 0.035 0.608 0.810 0.019 0.015
[-0.025,-0.009] [0.027,0.040] [0.325,0.866] [0.618,0.978] [0.009,0.031] [0.009,0.025]

Argentina -0.027 0.072 0.776 0.570 0.046 0.013
[-0.043,-0.023] [0.057,0.076] [0.562,0.916] [0.344,0.783] [0.034,0.075] [0.008,0.024]

Brazil -0.032 0.029 0.605 0.790 0.022 0.019
[-0.071,-0.019] [0.026,0.032] [0.059,0.874] [0.619,0.926] [0.011,0.063] [0.014,0.026]

Note: For each country, we estimate an output process as: ∆ ln yt = ln (gt) + σtϵt − σt−1ϵt−1, in which ϵt ∼ N(0, 1) and

gt ∈ {gL, gH}, with Pr(gt+1 = gL|gt = gL) = pL and Pr(gt+1 = gH |gt = gH) = pH . If gt = gL, then σt = σL, otherwise

σt = σH . The table reports the mean and the interval between the 5th and 95th percentiles of the posterior distributions

of each of the parameters for each country. The table also reports the prior distributions we used, which were chosen to

be the same across countries. For each country, we use data on GDP per capita in 2016 US$ (converted to 2016 price

level with updated 2011 PPPs) between 1980 and 2017 from the Conference Board Total Economy Database as the

measure of yt.

and σH , respectively. Table A.1 shows the estimates for all countries. First, note that

the standard deviation posterior mean is similar across growth states, except for the case

of Argentina, and that the mean of σL is larger than the mean of σH in all cases. In the

case of Italy, the difference between σ’s is somewhat larger, but the values are still within

the interval analyzed in Figures E.1c and E.2c, which are shown to not have significant

implications for our results. Finally, Table A.1 also shows that the posterior distributions

of the remaining parameters are very similar to their counterparts in Table 1.

B Data appendix

In this appendix, we describe the data sources we used to compute the series of debt

levels and debt services for Argentina and Spain.

Argentina:
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Debt level We use the data on gross external debt reported by the World Bank’s

International Debt Statistics (series code DT.DOD.DECT.GN.ZS). This measure cor-

responds to the principal of bonds issuance, at face value, summed over all outstanding

bonds.

Debt service Computed as the sum of external short-term debt in the previous year

and current debt service on external long-term debt. Data on short-term debt (series

code DT.DOD.DSTC.ZS) and on debt service on external long-term debt (series code

DT.TDS.DECT.CD) are from the World Bank’s International Debt Statistics.

Data from the World Bank’s International Debt Statistics are expressed as a per-

centage of GNI. We convert them to percentage of GDP using the series of the ratio of

GNP to GDP for Argentina from the University of Pennsylvania, retrieved from FRED,

Federal Reserve Bank of St. Louis (series code GNPGDPARA156NUPN).

Spain:

Debt level We use the Net International Investment Position reported by Banco de

España (series code BE 17 30.7).

Debt service Data on debt service for Spain are not readily available. We impute

debt services as the sum of: interest payments due in the year, short-term debt maturing

in the year, and the fraction of long-term debt that matures in the year.

• Interest payments : We use data on net investment income from the balance of

payments. It is computed as investment payments (series code BE 17 5A.7) minus

investment income (series code BE 17 5A.6), both from Banco de España.

• Short-term debt : We use data on net short-term debt related to portfolio income ex-

cluding Banco de España. It is computed as the liabilities (series code BE 17 27.8)

minus assets (series code BE 17 22.8), both from Banco de España.

• Long-term debt maturing : We compute the stock of long-term debt as the debt level

minus the short-term debt, both as described above. We multiply this amount by

δ = 0.15 to estimate the principal payments on long-term debt.

We do not have data on average maturity for the net international investment position

of Spain. In turn, we use δ = 0.15 based on the average maturity of Spain’s central

government debt of 6 to 7 years, as reported by the Tesoro Público de España.

C Model normalization

In this appendix, we provide more details on the normalization step. First, we show

that the value functions and the interest rate schedule satisfy certain homogeneity prop-

erties. Second, we use these homogeneity properties to derive the stationary system
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presented in Section 3.2. The algorithm for solving this stationary system is discussed

in Appendix D.

We proceed by guess and verify. In particular, we guess that equilibrium functions

satisfy certain homogeneity properties and then use the equilibrium equations to verify

that our guess is consistent with the equilibrium definition. That is, we do not claim that

all possible equilibria satisfy these properties, but rather that the equilibrium admits a

solution with these properties.

Proposition 1 (Homogeneity of equilibrium functions). For any λ > 0, the equilib-

rium functions admit a solution that satisfies the following homogeneity properties: (i)

V nd(λB, λΓ−, g, s, ϵ) = λ1−γV nd(B,Γ−, g, s, ϵ) and V
d(λB, λΓ−, g, s, ϵ) = λ1−γV d(B,Γ−, g, s, ϵ);

(ii) B′(λB, λΓ−, g, s, ϵ) = λB′(B,Γ−, g, s, ϵ); (iii) Q(B, λR,Γ−, g, s) = λQ(B,R,Γ−, g, s)

and X (B, λR,Γ−, g, s) = λX (B,R,Γ−, g, s); (iv) Q(λB,R, λΓ−, g, s) = Q(B,R,Γ−, g, s)

and X (λB,R, λΓ−, g, s) = X (B,R,Γ−, g, s); and (v) R(λN, λB, λΓ−, g, s) = R(N,B,Γ−, g, s).

Proof. Let’s start with (i). From equation (16), the value of default V d(·) can be written
as

V d (λB, λΓ−, g, s, ϵ) =
[ϕ(g)gλΓ−e

σϵ]
1−γ

1− γ
+ βE

[
θV d (λB, gλΓ−, g

′, s′, ϵ′)

+ (1− θ)max

{
V nd (κλB, gλΓ−, g

′, s′, ϵ′) ,

V d (λB, gλΓ−, g
′, s′, ϵ′)

}
|Γ−, g, s

]

= λ1−γ [ϕ(g)gΓ−e
σϵ]

1−γ

1− γ
+ βE

[
θλ1−γV d (B, gΓ−, g

′, s′, ϵ′)

+ (1− θ)max

{
λ1−γV nd (κB, gΓ−, g

′, s′, ϵ′) ,

λ1−γV d (B, gΓ−, g
′, s′, ϵ′)

}
|Γ−, g, s

]
= λ1−γV d (B,Γ−, g, s, ϵ)

where the second equality uses the guess for V nd(·) and V d(·), and the last equality verifies

the guess for V d(·).
Next, we verify the homogeneity property for the value of no default V nd(·). For

this purpose, it’s convenient to express the issuance limit N̄(B,Γ−, g, s) in (15) as set
constraint. In particular, let N(B,Γ−, g, s) be the set of issuance N such that next
period default probability is below p̄. Formally

N(B,Γ−, g, s) =

{
N : P

(
V nd(B′,Γ, g′, s′, ϵ′) ≤ V d(B′,Γ, g′, s′, ϵ′)

∣∣Γ−, g, s
)
≤ p̄

s. to B′ = (1− δ)B +R(N,B,Γ−, g, s)N

}
(C.1)

Thus, the set N(B,Γ−, g, s) contains all possible issuance N such that the default prob-
ability next periods is below a number p̄. Under our guess, the set N(·) satisfies that if
N ∈ N(B,Γ−, g, s), then λN ∈ N(λB, λΓ−, g, s). To see this, note that, when the state
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is (λB, λΓ−, g, s), the probability of default after issuance λN is given as

P

(
V nd

(
(1− δ)λB +R(λN, λB, λΓ−, g, s)λN,

λΓ, g′, s′, ϵ′

)
≤ V d

(
(1− δ)λB +R(λN, λB, λΓ−, g, s)λN,

λΓ, g′, s′, ϵ′

)∣∣∣∣∣Γ−, g, s

)

= P

(
V nd

(
(1− δ)λB +R(N,B,Γ−, g, s)λN,

λΓ, g′, s′, ϵ′

)
≤ V d

(
(1− δ)λB +R(N,B,Γ−, g, s)λN,

λΓ, g′, s′, ϵ′

)∣∣∣∣∣Γ−, g, s

)

= P

(
λ1−γV nd

(
(1− δ)B +R(N,B,Γ−, g, s)N,

Γ, g′, s′, ϵ′

)
≤ λ1−γV d

(
(1− δ)B +R(N,B,Γ−, g, s)N,

Γ, g′, s′, ϵ′

)∣∣∣∣∣Γ−, g, s

)

= P

(
V nd

(
(1− δ)B +R(N,B,Γ−, g, s)N,

Γ, g′, s′, ϵ′

)
≤ V d

(
(1− δ)B +R(N,B,Γ−, g, s)N,

Γ, g′, s′, ϵ′

)∣∣∣∣∣Γ−, g, s

)
= P

(
V nd(B′,Γ, g′, s′, ϵ′) ≤ V d(B′,Γ, g′, s′, ϵ′)

∣∣Γ−, g, s
)

where the second line uses our guess for R(·), and the third line uses the guess for V nd(·)
and V d(·). The last line shows that the probability of default after issuance λN under

state (λB, λΓ−, g, s) is the same as the probability of default after issuance N under state

(B,Γ−, g, s). Thus, if N ∈ N(B,Γ−, g, s), then λN ∈ N(λB, λΓ−, g, s).
Let U(N,B,Γ−, g, s, ϵ) be the value of no default when issuing N . That is

U(N,B,Γ−, g, s, ϵ) =

{
C1−γ

1− γ
+ βE

[
max

{
V nd(B′,Γ, g′, s′, ϵ′), V d(B′,Γ, g′, s′, ϵ′)

}
|Γ−, g, s

]}
s.t. (C.2)

C +B = Y +N,

B′ = (1− δ)B +R(N,B,Γ−, g, s)N,

Y = Γeσϵ, Γ = egΓ−

When defining U(·), we imposed all constrains of V nd(·) in equation (15) except for

issuance limit N ∈ N(B,Γ−, g, s). Thus, we have

V nd(B,Γ−, g, s, ϵ) = max
N

{U(N,B,Γ−, g, s, ϵ) s. to N ∈ N(B,Γ−, g, s)} . (C.3)

Notice that U(λN, λB, λΓ−, g, s, ϵ) = λ1−γU(N,B,Γ−, g, s, ϵ). In particular,

U(λN, λB, λΓ−, g, s, ϵ) =
[gλΓ−e

σϵ + λN − λB]
1−γ

1− γ

+ βE

max

V nd
(
(1− δ)λB +R(λN, λB, λΓ−, g, s)λN, λgΓ−, g

′, s′, ϵ′
)

V d
(
(1− δ)λB +R(λN, λB, λΓ−, g, s)λN, λgΓ−, g

′, s′, ϵ′
)  |Γ−, g, s


= λ1−γ [gΓ−e

σϵ +N −B]
1−γ

1− γ

+ βE

max

λ1−γV nd
(
(1− δ)B +R(N,B,Γ−, g, s)N, gΓ−, g

′, s′, ϵ′
)

λ1−γV d
(
(1− δ)B +R(N,B,Γ−, g, s)N, gΓ−, g

′, s′, ϵ′
)  |Γ−, g, s


= λ1−γU(N,B,Γ−, g, s, ϵ) (C.4)

where the second equality uses the guess on V d(·), V nd(·), and R(·).
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We use equation (C.3) to show that the issuance policy is linear in (B,Γ−). Let

N(B,Γ−, g, s, ϵ) be the optimal policy in equation (C.3). Then, under our guess, we

have N(λB, λΓ−, g, s, ϵ) = λN(B,Γ−, g, s, ϵ). We proceed to prove this by contradic-

tion. Assume that there is another policy, λN̂ ̸= λN(B,Γ−, g, s, ϵ), which is feasible and

delivers higher utility U . That is, λN̂ ∈ N(λB, λΓ−, g, s) and U
(
λN̂, λB, λΓ−, g, s, ϵ

)
>

U (λN(B,Γ−, g, s, ϵ), λB, λΓ−, g, s, ϵ). Using the homogeneity properties of the set N(·),
we know that if λN̂ ∈ N(λB, λΓ−, g, s), then N̂ ∈ N(B,Γ−, g, s). Using the homogeneity

of U in equation (C.4), we know that if U
(
λN̂, λB, λΓ−, g, s, ϵ

)
> U (λN(B,Γ−, g, s, ϵ)λB, λΓ−, g, s, ϵ),

then U
(
N̂ , B, λΓ−, g, s, ϵ

)
> U (N(B,Γ−, g, s, ϵ), B,Γ−, g, s, ϵ). This is a contradiction,

because N̂ would be feasible under state (B,Γ−, g, s, ϵ) and deliver higher utility than

N(B,Γ−, g, s, ϵ), contradicting that N(B,Γ−, g, s, ϵ) is an optimal policy. Then, we have

that N(λB, λG−, g, s, ϵ) = λN(B,G−, g, s, ϵ).
Finally, we can show the homogeneity property of V nd(·). In particular,

V nd(λB, λG−, g, s, ϵ) = U(N(λB, λG−, g, s, ϵ), λB, λG−, g, s, ϵ)

= U(λN(B,G−, g, s, ϵ), λB, λG−, g, s, ϵ)

= λ1−γU(N(B,G−, g, s, ϵ), B,G−, g, s, ϵ)

= λ1−γV nd(B,Γ−, g, s, ϵ) (C.5)

where the second line uses the linearity of N(·), the third line uses the homogeneity of

U(·), and the first and last lines use the definition of U(·).
Let’s move to (ii). We have that

B′(B,Γ−, g, s, ϵ) = (1− δ)B +R(N(B,Γ−, g, s, ϵ), B,Γ−, g, s, ϵ)N(B,Γ−, g, s, ϵ).

Then,

B′(λB, λΓ−, g, s, ϵ) = (1− δ)λB +R(N(λB, λΓ−, g, s, ϵ), λB, λΓ−, g, s, ϵ)N(λB, λΓ−, g, s, ϵ)

= (1− δ)λB +R(λN(B,Γ−, g, s, ϵ), λB, λΓ−, g, s, ϵ)λN(B,Γ−, g, s, ϵ)

= (1− δ)λB +R(N(B,Γ−, g, s, ϵ), B,Γ−, g, s, ϵ)λN(B,Γ−, g, s, ϵ)

= λB′(B,Γ−, g, s, ϵ) (C.6)

where the second line uses the linearity of N(·), the third line uses our guess for R(·),
and the fourth line confirms the linearity of B′(·).

Let’s move to (iii). When proving the homogeneity properties of the price functions

Q(·) and X (·), we are essentially comparing two bonds—one that pays R, another that

pays λR—while keeping the debt services B fixed. Thus, the state of the borrower doesn’t

change as we move λ.
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From equation (19), we have

Q(B, λR,Γ−, g, s, ϵ) = [1−D(B,Γ−, g, s, ϵ)]

[
λR+

1− δ

1 + r∗
E
[
Q (B′(B,Γ−, g, s, ϵ), λR,Γ, g′, s′, ϵ′) |Γ−, g, s

]]
+D(B,Γ−, g, s, ϵ)X (B, λR,Γ−, g, s, ϵ)

= [1−D(B,Γ−, g, s, ϵ)]

[
λR+

1− δ

1 + r∗
E
[
λQ (B′(B,Γ−, g, s, ϵ), R,Γ, g′, s′, ϵ′) |Γ−, g, s

]]
+D(B,Γ−, g, s, ϵ)λX (B, λR,Γ−, g, s, ϵ)

= λQ(B,R,Γ−, g, s, ϵ) (C.7)

where the second line uses our guess for Q(·) and X (·), and the third line verifies the
guess for Q(·). Mutatis mutandis, same procedure for X (·) using equation (20)

X (B, λR,Γ−, g, s, ϵ) =
1

1 + r∗
E

[
θX (B′, λR,Γ, g′, s′, ϵ′) + (1− θ) [1−E(B′,Γ, g′, s′, ϵ′)]X (B′, λR,Γ, g′, s′, ϵ′)

+ (1− θ)E(B′,Γ, g′, s′, ϵ′)Q(κB′, κλR,Γ, g′, s′, ϵ)|Γ−, g, s

]

=
1

1 + r∗
E

[
θλX (B′, R,Γ, g′, s′, ϵ′) + (1− θ) [1−E(B′,Γ, g′, s′, ϵ′)]λX (B′, R,Γ, g′, s′, ϵ′)

+ (1− θ)E(B′,Γ, g′, s′, ϵ′)λQ(κB′, κR,Γ, g′, s′, ϵ)|Γ−, g, s

]
= λX (B,R,Γ−, g, s, ϵ) (C.8)

Let’s move to (iv). We start by showing that default and re-entry policies satisfy
D(λB, λΓ−, g, s, ϵ) = D(B,Γ−, g, s, ϵ) and E(λB, λΓ−, g, s, ϵ) = E(B,Γ−, g, s, ϵ). In par-
ticular, from equation (17) we have

D(λB, λΓ−, g, s, ϵ) = I
{
V nd(λB, λΓ−, g, s, ϵ) < V d(λB, λΓ−, g, s, ϵ)

}
= I

{
λ1−γV nd(B,Γ−, g, s, ϵ) < λ1−γV d(B,Γ−, g, s, ϵ)

}
= D(B,Γ−, g, s, ϵ) (C.9)

where I{·} is an indicator function. Similarly, using equation (18)

E(λB, λΓ−, g, s, ϵ) = I
{
V nd(κλB, λΓ−, g, s, ϵ) ≥ V d(λB, λΓ−, g, s, ϵ)

}
= I

{
λ1−γV nd(κB,Γ−, g, s, ϵ) ≥ λ1−γV d(B,Γ−, g, s, ϵ)

}
= E(B,Γ−, g, s, ϵ) (C.10)
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Then, using equation (19), we have

Q(λB,R, λΓ−, g, s, ϵ) = [1−D(λB, λΓ−, g, s, ϵ)]

[
1 +

1− δ

1 + r∗
E
[
Q (B′(λB, λΓ−, g, s, ϵ), R, λΓ, g′, s′, ϵ′) |Γ−, g, s

]]
+D(λB, λΓ−, g, s, ϵ)X (λB,R, λΓ−, g, s, ϵ)

= [1−D(λB, λΓ−, g, s, ϵ)]

[
1 +

1− δ

1 + r∗
E
[
Q (λB′(B,Γ−, g, s, ϵ), R, λΓ, g′, s′, ϵ′) |Γ−, g, s

]]
+D(λB, λΓ−, g, s, ϵ)X (λB,R, λΓ−, g, s, ϵ)

= [1−D(λB, λΓ−, g, s, ϵ)]

[
1 +

1− δ

1 + r∗
E
[
Q (B′(B,Γ−, g, s, ϵ), R,Γ, g′, s′, ϵ′) |Γ−, g, s

]]
+D(λB, λΓ−, g, s, ϵ)X (B,R,Γ−, g, s, ϵ)

= [1−D(B,Γ−, g, s, ϵ)]

[
1 +

1− δ

1 + r∗
E
[
Q (B′(B,Γ−, g, s, ϵ), R,Γ, g′, s′, ϵ′) |Γ−, g, s

]]
+D(B,Γ−, g, s, ϵ)X (B,R,Γ−, g, s, ϵ)

= Q(B,R,Γ−, g, s, ϵ), (C.11)

where the second line uses the linearity of B′(·), the third line uses our guess on Q(·) and
X (·), the fourth line uses the homogeneity properties of D(·) and E(·), and the last line
confirms our guess. Again, using equation (20), we can follow the same procedure for
X (·):

X (λB,R, λΓ−, g, s, ϵ) =
1

1 + r∗
E

[
θX (λB,R, λΓ, g′, s′, ϵ′) + (1− θ) [1−E(λB, λΓ, g′, s′, ϵ′)]X (λB,R, λΓ, g′, s′, ϵ′)

+ (1− θ)E(λB, λΓ, g′, s′, ϵ′)Q(κλB, κR, λΓ, g′, s′, ϵ)|Γ−, g, s

]

=
1

1 + r∗
E

[
θX (B,R,Γ, g′, s′, ϵ′) + (1− θ) [1−E(B,Γ, g′, s′, ϵ′)]X (B,R,Γ, g′, s′, ϵ′)

+ (1− θ)E(B,Γ, g′, s′, ϵ′)Q(κB, κR,Γ, g′, s′, ϵ)|Γ−, g, s

]
= X (B,R,Γ−, g, s, ϵ). (C.12)

Let’s move to (v). Using equations (21) and (22), we can express R(·) as

(R (λN, λB, λΓ−, g, s))
−1

=
E [Q ((1− δ)λB,+R (λN, λB, λΓ−, g, s)λN, λΓ, g′, s′, ϵ′) |Γ−, g, s]

1 + r∗

=
E [Q ((1− δ)λB,+R (N,B,Γ−, g, s)λN, λΓ, g′, s′, ϵ′) |Γ−, g, s]

1 + r∗

=
E [Q ((1− δ)B,+R (N,B,Γ−, g, s)N,Γ, g′, s′, ϵ′) |Γ−, g, s]

1 + r∗

= (R (N,B,Γ−, g, s))
−1

(C.13)

where the second line uses our guess for R(·), the third line use the homogeneity of Q(·),
and the last line confirms our guess for R(·).

The model normalization from Section 3.2 uses the homogeneity properties just de-

rived. In particular, the detrended model from Section 3.2 comes from setting λ = 1/Γ−
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and using: (i) vnd(b, g, s, ϵ) = V nd(λB, λΓ−, g, s, ϵ) and vd(b, g, s, ϵ) = V d(λB, λΓ−, g, s, ϵ);

(ii) Q(b, g, s, ϵ) = Q(λB, 1, λΓ−, g, s, ϵ) and X(b, g, s, ϵ) = X (λB, 1, λΓ−, g, s, ϵ); (iii)

R(n, b, g, s, ϵ) = R(λN, λB, λΓ−, g, s, ϵ); and (iv) d(b, g, s, ϵ) = D(λB, λΓ−, g, s, ϵ) and

e(b, g, s, ϵ) = E(λB, λΓ−, g, s, ϵ); where b = B/Γ− and n = N/Γ−.

D Computational algorithm

In this appendix, we provide details about the computation of the detrended model

of Section 3.2.

Step 0: We set an evenly spaced grid b⃗ = {b1, b2, . . . , bNb
} for debt service values,

and a grid ϵ⃗ = {ϵ1, ϵ2, . . . , ϵNϵ} for the transitory shocks to endowment. For Argentina,

we use Gauss quadrature nodes for ϵ⃗, and we set Nb = 3000, Nϵ = 55, b1 = −0.05, and

bNb
= 0.5. For Spain, we need a finer grid to deal with converge issues due to longer

maturity. of debt. We use the discretization method in Tauchen (1986) with parameter

3.5 for ϵ⃗, and we set Nb = 7350, Nϵ = 17, b1 = −0.01, and bNb
= 0.3. In both cases, b1

and bNb
were chosen such that the grid covers all values of b in our simulations.

Step 1: Guess a value for no default vnd(b, g, s, ϵ) and an implied policy for debt

services b′(b, g, s, ϵ). We restrict debt service to be on the grid, b′(b, g, s, ϵ) ∈ b⃗.

Step 2: Given vnd(b, g, s, ϵ), we compute the value of default vd(b, g, s, ϵ) using equa-

tion (24). We can then compute the policies for default and re-entry, d(b, g, s, ϵ) and

e(b, g, s, ϵ), as in equations (29) and (30). We also compute the maximum of both values,

w(b, g, s, ϵ) = max
{
vnd(b, g, s, ϵ), vd(b, g, s, ϵ)

}
.

Step 3: Given d(b, g, s, ϵ) and e(b, g, s, ϵ), as well as the guess for debt service policy

b′(b, g, s, ϵ), we jointly solve for prices Q(b, g, s, ϵ) and X(b, g, s, ϵ) using equations (27)

and (28). We use linear interpolation for Q(·) and X(·) for values of b outside the grid—
which may occur because of the recovery κ or the growth rate g, even if the debt service

policy is on the grid b⃗.

Step 4: For each debt service bi ∈ b⃗ on the grid, we compute the expected next-period

price of a bond starting with debt service bi: Q
E
i (g, s) = E [Q(bi, g

′, s′, ϵ′)|g, s]. Then, for

each bi ∈ b⃗, we use equation (25) to compute the implied rate consistent with QE
i (g, s):

Ri(g, s) =
1+r∗

QE
i (g,s)

. Then, we compute the implied issuance: ni(b, g, s) =
bi−(1−δ)b
Ri(g,s)

. Note

that the issuance depends on next-period debt services as well as current debt services.

The above steps yield, for each (b, g, s), a correspondence {Ri, ni}i, resembling the ones

in Figures 6 and 8 (where we omitted the inputs of Ri and ni to ease notation). In what

follows, we restrict our attention to the pairs {Ri, ni}i with implied default probabilities

in the next period below 65%.25

25The default probability restriction is implemented by setting a utility penalty of 1e24 for the pairs
violating the restriction.
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For a given n, there may be multiple values of R in the correspondence, so the next

step consists of restricting the set of pairs (Ri, ni) in {Ri, ni}i that are available to the

borrower according to the sunspot realization. In the case of the good sunspot, we simply

allow the borrower to choose any of the pairs in the correspondence {Ri, ni}i, because
the borrower will always prefer the lowest rates. Therefore, the result is equivalent to

computing the increasing interest rate schedule with the lowest rates from which the

borrower can choose from.

For the bad sunspot, we first identify the increasing parts of the correspondence. Note

that the vector b⃗ is increasing, so j > i implies bj > bi, and then QE
i ≥ QE

j , and

thus Ri ≤ Rj. We then consider that a pair (Ri, ni) is in the increasing part of the

correspondence if ni+1 is larger than ni−1. Then, from the correspondence {Ri, ni}i,
we identify the points î for which there exists j > î such that: nj < nî, and nj is an

increasing part of the correspondence. Under the bad sunspot, we make all these î point

of the correspondence unavailable to the borrower. Thus, this procedure results in an

increasing interest rate schedule in which the highest rate is always selected for possible

issuance n.

Step 5: For each state (b, g, s), we have a schedule {Ri, ni}i associated with a next-

period debt service bi in the grid. Given the state (b, g, s, ϵ), we choose bi to maximize

utility as in equation (23). Let b̂′(b, g, s, ϵ) be the implied optimal policy. Let v̂nd(b, g, s, ϵ)

be the implied value of no default, and ŵ(b, g, s, ϵ) = max
{
v̂nd(b, g, s, ϵ), vd(b, g, s, ϵ)

}
the

maximum of both values.

If max |w(b, g, s, ϵ)− ŵ(b, g, s, ϵ)| < 1e−5, the model converged. Otherwise, we update

vnd(b, g, s, ϵ) and go to Step 2.

E Model robustness results

In this appendix, we show how the quantitative results of our model change with

reasonable perturbations to the benchmark parameters in Table 2. Specifically, we show

both the interest rate schedules in the low-growth state (Figures E.1 and E.2) and sim-

ulation results (Tables E.1 and E.2) for Argentina and Spain for different values of the

parameters related to the persistence of the low- and high-growth states (pL and pH),

maturity (δ), recovery rate (κ), standard deviation of the transitory shocks to endowment

(σ), cost of default in the high-growth state (ϕ(gH)), and discount factor (β).

Maturity δ Columns (2) and (3) in Tables E.1 and E.2 report the simulation re-

sults for different values of the parameter δ for the cases of Argentina and Spain, re-

spectively. Their respective interest rate schedules under the benchmark calibration are

discussed in Section 5.1 (Figure 7c) and Section 5.2 (Figure 9c). For both Argentina

and Spain, the simulation results show that a shorter maturity (higher δ) diminishes the
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debt dilution incentives, and the borrower is able to issue more debt at lower spreads,

associated with lower default rates. In the case of Argentina, by moving δ from 0.15

to 0.60, the average spread decreases from 16.4% to 0.1%, while debt issuance increases

from 12% to 29% of GDP. Similarly, for Spain, the average spread decreases from 7.8%

to 1.1% and debt issuance increases from 9% to 24% of GDP when δ increases from 0.10

to 0.20.

Persistence of the low growth-state pL Figures E.1a and E.2a show the interest

rate schedules for higher values of pL (black dashed line) relative to the benchmark (red

solid line). In line with the discussion in Section 2, higher values of pL are associated with

an increase in the high interest rates, and the borrower is able to issue less debt. The

simulation results in Tables E.1 and E.2 show that, with higher pL, the borrower chooses

endogenous austerity when facing the higher spreads. In the case of Argentina, default

rates decrease from 5.1% to 3.6% when pL increases to 0.65 relative to the benchmark

value of 0.60—see columns (1) and (4) in Tables E.1 and E.2.

Recovery rate κ Figures E.1b and E.2b show the interest rate schedules for recov-

ery rates of 70% (black dashed line), lower than the benchmark of 75% (red solid line). In

both cases, lower recovery rates increase the high interest rates and the borrower is able

to issue less debt. But the changes are quantitatively small. Tables E.1 and E.2 show that

the simulation results with lower values of κ are very similar to the benchmark case—see

columns (1) and (5) in Tables E.1 and E.2.

Standard deviation of the transitory shocks to endowment σ Figures E.1c

and E.2c show the interest rate schedules for higher values of σ (black dashed line)

relative to the benchmark (red solid line). In this case, the variation in σ has different

implications for the schedules and simulation results between Argentina and Spain. In

the case of Argentina, the interest rate schedules shift to the left, so the borrower is able

to issue less debt in equilibrium. This is reflected in column (6) in Table E.1, in which

average issuance decreases to 22% of GDP in comparison to 25% in the benchmark case

in column (1). In the case of Spain, the interest rate schedules shift to the right, so the

borrower is able to actually issue more debt in equilibrium. This is reflected in column

(6) in Table E.2, in which average issuance decreases to 19% of GDP in comparison to

18% in the benchmark case in column (1). The differences between Argentina and Spain

reflects two opposing effects of increasing σ. On the one hand, a higher σ reduces the

value of being in default, since smoothing consumption through debt issuance is no longer

an option, thus increasing possible debt issuances to the borrower. On the other hand, a

higher σ makes bad draws more likely, increasing default probabilities and, thus, lowering

possible debt issuances to the borrower. In the case of Argentina, in which the borrower
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adopts a gambling for redemption strategy, the lower value of repayment dominates, and

the borrower is able to issue less debt. In the case of Spain, which adopts an austerity

strategy, the lower value of default dominates, and the borrower is able to issue more

debt. Overall, the quantitative implications of a change in σ that we analyzed are small,

even though we chose values of σ above the 95th percentile of the posterior distribution

for most countries in Table 1.

Cost of default in the high-growth state ϕ(gH) Figures E.1d and E.2d show

the interest rate schedules for higher values of ϕ(gH) (black dashed line) relative to the

benchmark (red solid line) for Argentina and Spain, respectively. Higher values of ϕ(gH)

represent a lower cost of default, which makes default relatively more attractive. As a

result, for both Argentina and Spain, the interest rate schedules shift to the left, meaning

that the borrower can issue less debt in equilibrium. By comparing the simulation results

in Tables E.1 and E.2, the results with lower default costs in column (7) are very similar

to the benchmark case in column (1).

Persistence of the high growth-state pH Figures E.1e and E.2e show the interest

rate schedules for lower values of pH (black dashed line) relative to the benchmark (red

solid line) for Argentina and Spain, respectively. A lower pH means that the high-growth

state is less persistent, so the economy is more likely to enter a stagnation period. This

increases the high interest rates in the high-growth schedules, making the gambling for

redemption strategy less attractive. With lower incentives to gamble for redemption,

and therefore to default, the borrower is able to issue more debt at lower rates. This

explains the schedules shifting to the right both in Figures E.1e and E.2e. In the case of

Argentina, that actually pushes the borrower to end its gambling for redemption strategy

and to adopt austerity instead, so the interest rates become much lower. That is reflected

in the simulation results in column (8) in Tables E.1 and E.2. In the case of Argentina,

default rates decrease from 5.1% in the benchmark case in column (1) to 0.2% in column

(2).

Discount factor β Figures E.1f and E.2f show the interest rate schedules for higher

values of β (black dashed line) relative to the benchmark (red solid line) for Argentina

and Spain, respectively. A higher value of β means that the borrower is more patient

and therefore less likely to adopt a gambling for redemption strategy. Thus, for both

for Argentina and Spain, the interest rate schedules shifts to the right with higher β,

meaning that the borrower can issue more debt at lower rates. Tables E.1 and E.2 show

that default rates are significantly lower with higher β relative to the benchmark—see

columns (9) and (1) in Tables E.1 and E.2.
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Difference between growth rates (gH − gL) Figures E.1g and E.2g show the

interest rate schedules for different distances between the high- and low-growth rates,

which we denote ∆g ≡ gH − gL. We pick gL and gH such that, as we vary ∆g, the

(unconditional) average growth rate of the economy remains the same. Therefore, a larger

difference ∆g implies a higher gH and a lower gL relative to the benchmark. For Argentina

(Figure E.1g) we compare the benchmark with ∆g = 6% (red solid line), to a case with

a larger difference in growth rates, ∆g = 8% (black dashed line). For Spain (Figure

E.2g), we compare the benchmark with ∆g = 5% (red solid line), to a case with a lower

difference in growth rates, ∆g = 4% (black dashed line). The plots show that a higher ∆g

shifts the schedule right for Argentina, while the opposite occurs for Spain. Accordingly,

a larger ∆g increases debt issuance for Argentina while it actually lowers it for Spain–

see columns (10) and (1) in Tables E.1 and E.2. The differences between Argentina and

Spain reflects two opposing effects of increasing ∆g. On the one hand, a larger ∆g implies

a more volatile output path as well as a lower gL, both of which decrease the value of

default, thus increasing possible debt issuances to the borrower. One the other hand, a

larger ∆g implies lower output realizations in the low-growth state, which lowers the value

of repayment in low-growth periods, thus increasing default rates and lowering possible

debt issuances. For Argentina, the reduction in the value of default dominates and the

economy is able to issue more debt. For Spain, the increase in the value of repayment

dominates. Importantly, the overall changes are quantitatively small, and the plots show

that the multiplicity in the interest rate schedules is robust to reasonable changes in ∆g.
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Figure E.1: Interest rate spreads for Argentina in the low growth state (b = 20%):
Comparative statics
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Figure E.2: Interest rate spreads for Spain in the low growth state (b = 15%): Compar-
ative statics
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Table E.1: Simulation moments: Argentina

Benchmark δ = 0.15 δ = 0.6 pL = 0.65 κ = 0.70 σ = 3% ϕ(gH) = 0.92 pH = 0.7 β = 0.8 gH − gL = 8%
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

First moments
avg(b/y) 30 17 31 29 28 27 24 23 26 31
avg(qb/δy) 49 48 50 47 51 43 39 53 61 55
avg(f/y) 50 50 49 49 46 44 40 52 59 52
avg(n/y) 25 12 29 24 24 22 20 21 24 26
avg(tb/y) 5.1 5.2 1.5 5.6 4.4 4.6 4 1.7 1.8 5.2
default rate 5.1 5 0.2 3.6 5.3 5.3 4.9 0.2 0.3 3.8
avg(spread) 16.4 16.4 0.1 16.7 17.4 16.5 16.5 0.1 0.1 16.5

Low-growth state
avg(b/y) 22 14 32 18 20 20 18 23 27 23
avg(qb/δy) 11 2 52 25 25 10 6 55 64 23
avg(f/y) 37 39 50 32 33 34 30 53 61 38
avg(n/y) 25 17 28 14 20 23 20 19 22 26
avg(tb/y) -3 -3.4 4 3.8 0.2 -2.4 -2.7 3.9 4.7 -3.9
default rate 13.3 13 0.6 8.7 13.9 13.7 12.8 0.6 0.8 9.7
avg(spread) 30.4 24.9 0.1 10.8 31.9 30 30.2 0.1 0.1 30.6

High-growth state
avg(b/y) 30 18 30 29 28 27 24 22 25 31
avg(qb/δy) 50 50 49 48 53 45 40 52 60 56
avg(f/y) 50 50 48 49 47 45 40 50 58 52
avg(n/y) 25 12 30 24 24 22 20 22 25 26
avg(tb/y) 5.4 5.7 0 5.6 4.6 4.9 4.3 0.1 0.1 5.5
default rate 0 0.1 0 0 0 0.1 0 0 0 0
avg(spread) 15.9 15.9 0.1 16.7 16.8 15.8 16 0.1 0.1 16

Second moments
std(spread) (p.p.) 2.9 2.1 0.1 1.2 3.1 3.4 2.9 0.1 0 3
std(c)/std(y) (p.p.) 2.8 2.6 0.8 3.2 3.2 1.9 2.5 1.5 1.6 2.7

Note: b denotes total debt service (principal+coupon payments), qb/δ denotes the market value of debt, f denotes the face value of debt, n denotes debt

issuance, tb denotes trade balance, and y denotes output. We simulate the model economy for 20,000 periods, exclude the first 1,000 periods, and compute

moments conditional on not being in default. The default rate is the number of default episodes per 100 periods divided by 100.
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Table E.2: Simulation moments: Spain

Benchmark δ = 0.1 δ = 0.2 pL = 0.68 κ = 0.70 σ = 2.7% ϕ(gH) = 0.95 pH = 0.8 β = 0.8 gH − gL = 4%
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

First moments
avg(b/y) 17 11 23 17 16 18 16 19 20 19
avg(qb/δy) 88 52 98 88 86 95 87 100 110 105
avg(f/y) 86 52 93 85 83 91 84 96 106 100
avg(n/y) 18 9 24 18 18 19 18 20 18 20
avg(tb/y) -1.4 1.6 -0.9 -1.2 -1.9 -1.5 -1.6 -1.2 1.9 -0.4
default rate 5.2 6 4.7 5.3 5.1 5.1 5.4 5.4 0.4 4.2
avg(spread) 1.2 7.8 1.1 1.2 1.1 1.1 1.1 1.2 0.2 0.8

Low-growth state ‘
avg(b/y) 16 10 23 16 15 17 16 18 21 19
avg(qb/δy) 80 33 95 81 77 88 78 95 114 103
avg(f/y) 84 47 93 84 80 90 82 95 110 101
avg(n/y) 17 10 21 16 17 18 17 18 15 18
avg(tb/y) -0.9 0.2 1.1 -0.1 -2 -0.3 -1 0.5 6 1.2
default rate 18 20 14.7 15.6 17 16.9 17.3 15.4 1.3 14
avg(spread) 0.1 9.4 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.1

High-growth state
avg(b/y) 17 11 23 17 16 18 16 19 20 19
avg(qb/δy) 89 55 99 89 88 97 88 102 109 105
avg(f/y) 86 53 93 85 83 92 84 96 105 100
avg(n/y) 18 9 24 18 18 20 18 21 19 20
avg(tb/y) -1.5 1.8 -1.4 -1.4 -1.9 -1.8 -1.7 -1.8 0.3 -0.8
default rate 0 0.1 0.4 0 0 0.1 0 0 0 0
avg(spread) 1.4 7.5 1.4 1.4 1.4 1.3 1.3 1.5 0.2 1

Second moments
std(spread) (p.p.) 0.7 1.3 1 0.7 0.7 0.7 0.7 0.9 0 0.8
std(c)/std(y) (p.p.) 2.7 2.3 2.8 2.6 2.9 2.3 2.7 2.8 1.9 2.9

Note: b denotes total debt service (principal+coupon payments), qb/δ denotes the market value of debt, f denotes the face value of debt, n denotes debt

issuance, tb denotes trade balance, and y denotes output. We simulate the model economy for 20,000 periods, exclude the first 1,000 periods, and compute the

moments conditional on not being in default. The default rate is the number of default episodes per 100 periods divided by 100.
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