Escaping the Losses from Trade: The Impact of Heterogeneity and Skill Acquisition

Axelle Ferriere¹ Gaston Navarro² Ricardo Reyes-Heroles²

¹Paris School of Economics

²Federal Reserve Board

November 23, 2021

These views are those of the authors and not necessarily those of the Board of Governors or the Federal Reserve System.

Motivation

o Important distributional consequences of trade

Autor, Dorn & Hanson (2013), Pierce & Schott (2016), Burstein & Vogel (2017),...

- Potential losses from greater import competition
- Current workers' industries, regions, occupations, firms, skills...

Motivation

o Important distributional consequences of trade

Autor, Dorn & Hanson (2013), Pierce & Schott (2016), Burstein & Vogel (2017),...

- Potential losses from greater import competition
- Current workers' industries, regions, occupations, firms, skills...
- o Several margins of adjustment to overcome initial losses
 - Regional migration

Caliendo, Dvorkin & Parro (2019), Dix-Carneiro & Kovak (2018), Lyon & Waugh (2019), ...

- Switching industries and/or occupations Dix-Carneiro (2014), Traiberman (2020), ...

Motivation

o Important distributional consequences of trade

Autor, Dorn & Hanson (2013), Pierce & Schott (2016), Burstein & Vogel (2017),...

- Potential losses from greater import competition
- Current workers' industries, regions, occupations, firms, skills...
- o Several margins of adjustment to overcome initial losses
 - Regional migration

Caliendo, Dvorkin & Parro (2019), Dix-Carneiro & Kovak (2018), Lyon & Waugh (2019), ...

- Switching industries and/or occupations Dix-Carneiro (2014), Traiberman (2020), ...

o Margin of adjustment for new generations of workers?

o Skill acquisition/college as a margin of adjustment

o Skill acquisition/college as a margin of adjustment

- Two questions:
 - + Do trade shocks affect college decisions?
 - $+\,$ What are the welfare consequences in the short- and long-run?

- o Evidence: effects of trade shocks on college enrollment
 - $+\,$ Effects on labor market outcomes for college/non-college

- o Evidence: effects of trade shocks on college enrollment
 - + Effects on labor market outcomes for college/non-college
- o Dynamic trade **model** with heterogeneous households
 - + Aiyagari-OLG structure with *costly education choice*
 - + Multi-region SOE model with HO-type comparative advantage
 - + Costly switching across local labor markets

What we find

- Evidence: trade shocks
 - + are more detrimental for less educated workers
 - + younger cohorts respond acquiring more education ... only in high-income families

What we find

- Evidence: trade shocks
 - + are more detrimental for less educated workers
 - + younger cohorts respond acquiring more education ... only in high-income families
- o Model: trade openness induces
 - + Short-run:
 - Higher wage premium and increased college enrollment . . . for wealthy households
 - Uneven welfare gains/losses determined by region, sector, and wealth.
 - + Long-run:
 - All welfare gains and higher college enrollment
 - Endogenous skill acquisitions makes long-run welfare gains more equal

Literature Review

- o Trade shocks and labor market adjustment
 - Autor, Dorn & Hanson (2013), Pierce & Schott (2016), Artuç, Chaudhuri, & McLaren (2010), Dix-Carneiro (2014), Traiberman (2020), Caliendo, Dvorkin & Parro (2019),...
- o Macroeconomics and skill acquisition
 - Charles, Hurst & Notowidigdo (2016)
 - Abbott, Gallipoli, Meghir & Violante (2019), Daruich (2020)
 - Adao, Beraja & Pandalai-Nayar (2020)
- o Trade, human capital, and inequality
 - Findlay & Kierzkowski (1983), Blanchard & Willmann (2016), Danziger (2017), Ghose (2019)
 - Atkin (2016), Greenland & Lopestri (2016), Blanchard & Olney (2018)
 - Katz and Murphy (1992), Autor, Katz and Kearney (2008), Keane and Wolpin (1997), Huggett, Ventura and Yaron (2011)
 - Helpman et al. (2010, 2017), Antràs et al. (2017), Burstein et al. (2016), Burstein & Vogel (2017)
- o Heterogeneous-agents trade-spatial macro models
 - Lyon & Waugh (2018, 2019), Carroll & Hur (2019,2020), Giannone et al. (2020), Greeney (2020)

Evidence

o **Import penetration** in region (market) r in period t

$$\Delta IPW_{rt} = \sum_{i} \frac{L_{rit}}{L_{rt}} \frac{\Delta M_{it}}{L_{it}}$$

i: sector, M_{it} : Chinese imports, L_{rit} : workers sector *i* and region *r*,

$$L_{rt} = \sum_i L_{rit}$$
, and $L_{it} = \sum_r L_{rit}$

- o Data overview:
 - + 722 commuting zones (regions)
 - + Two waves
 - Period 1990-2000: ΔIPW_{rt} Median: \$1,140, IQR: \$600
 - Period 2000-2007: ΔIPW_{rt} Median: \$2,600, IQR: \$1,500

• Effect of *import competition* on variable y_{it}

$$\Delta y_{rt} = \gamma_t + \beta \Delta IPW_{rt} + \delta X_{rt} + e_{rt}$$

• Effect of *import competition* on variable y_{it}

$$\Delta y_{rt} = \gamma_t + \beta \Delta IPW_{rt} + \delta X_{rt} + e_{rt}$$

 $+ y_{rt}$: employment, labor income and college enrollment

- + effect on different groups
 - working age 30-55 ightarrow by education levels
 - education decisions for ages 18-25

• Effect of *import competition* on variable y_{it}

$$\Delta y_{rt} = \gamma_t + \beta \Delta IPW_{rt} + \delta X_{rt} + e_{rt}$$

 $+ y_{rt}$: employment, labor income and college enrollment

- + effect on different groups
 - working age 30-55 \rightarrow by education levels
 - education decisions for ages 18-25
- + Data from American Community Survey (IPUMS)

o Effect of *import competition* on variable y_{it}

$$\Delta y_{rt} = \gamma_t + \beta \Delta IPW_{rt} + \delta X_{rt} + e_{rt}$$

 $+ y_{rt}$: employment, labor income and college enrollment

- + effect on different groups
 - working age 30-55 \rightarrow by education levels
 - education decisions for ages 18-25
- + Data from American Community Survey (IPUMS)

o Instrument ΔIPW_{it} by Chinese imports in other high-income countries

Effect on labor market opportunities: Income

.

Δy_{rt} : log change in labor income by education, ages 30-55								
	All	High School	Some Coll	2-y program	Bachelor			
ΔIPW_{rt}	-0.92^{**}							
	(0.40)							

20 55

Notes: "Some Coll" are all individuals with some college, "2-y program" are those who graduated from a 2 year program, and "Bachelor" are those with a bachelor degree or more; *** p < 1%, ** p < 5%, *p < 10%

o A \$1,000 increase in imports

Δ.

+ Decreases average labor income by 0.92%

Effect on labor market opportunities: Income

	All	High School	Some Coll	2-y program	Bachelor
ΔIPW_{rt}	-0.92^{**}	-1.41^{***}	-0.55^{*}		
	(0.40)	(0.45)	(0.35)		

 Δu : log change in labor income by education ages 30-55

(0.40) (0.45) (0.35) Notes: "Some Coll" are all individuals with some college, "2-y program" are those who graduated from a 2 year program, and "Bachelor" are those

Notes: "Some Coll" are all individuals with some college, "2-y program" are those who graduated from a 2 year program, and "Back with a bachelor degree or more; *** p < 1%, ** p < 5%, *p < 10%

- o A \$1,000 increase in imports
 - + Decreases average labor income by 0.92%
 - + Larger decline for less educated workers

Effect on labor market opportunities: Income

	All	High School	Some Coll	2-y program	Bachelor
ΔIPW_{rt}	-0.92^{**}	-1.41^{***}	-0.55^{*}	-0.45	-0.36
	(0.40)	(0.45)	(0.35)	(0.63)	(0.40)

 Δy_{rt} : log change in labor income by education, ages 30-55

Notes: "Some Coll" are all individuals with some college, "2-y program" are those who graduated from a 2 year program, and "Bachelor" are those with a bachelor degree or more; *** p < 1%, ** p < 5%, *p < 10%

- o A \$1,000 increase in imports
 - + Decreases average labor income by 0.92%
 - + Larger decline for less educated workers
 - + No effect for workers with bachelor degree or more

Effect on labor market opportunities: Employment

Δy_{rt} : chang	e in fraction	of pop	employed	by	education,	ages 30-55	

	All	High School	Some Coll	2-y program	Bachelor
ΔIPW_{rt}	-0.73^{**}				
	(0.20)				

Notes: "Some Coll" are all individuals with some college, "2-y program" are those who graduated from a 2 year program, and "Bachelor" are those with a bachelor degree or more; *** p < 1%, ** p < 5%, *p < 10%

o A \$1,000 increase in imports

+ Decreases average employment by 73bps

Effect on labor market opportunities: Employment

<u></u>		naction of pop	employed by e	446441611, 4866 6	0.00
	All	High School	Some Coll	2-y program	Bachelor
ΔIPW_{rt}	-0.73^{**}	-1.06^{***}	-0.46^{***}		
	(0.20)	(0.30)	(0.13)		

 $\Delta u_{\mu\nu}$ change in fraction of non-employed by education ages 30-55

Notes: "Some Coll" are all individuals with some college, "2-y program" are those who graduated from a 2 year program, and "Bachelor" are those

with a bachelor degree or more; **** p < 1%, *** p < 5%, *p < 10%

- o A \$1,000 increase in imports
 - + Decreases average labor income by 73bps
 - + Larger decline for less educated workers

Effect on labor market opportunities: Employment

	All	High School	Some Coll	2-y program	Bachelor
ΔIPW_{rt}	-0.73^{**}	-1.06^{***}	-0.46^{***}	-0.45^{**}	-0.31^{**}
	(0.20)	(0.30)	(0.13)	(0.18)	(0.12)

 Δy_{rt} : change in fraction of pop employed by education, ages 30-55

Notes: "Some Coll" are all individuals with some college, "2-y program" are those who graduated from a 2 year program, and "Bachelor" are those with a bachelor degree or more; *** p < 1%, ** p < 5%, *p < 10%

- o A \$1,000 increase in imports
 - + Decreases average labor income by 73bps
 - + Larger decline for less educated workers
 - + Smallest effect for workers with bachelor degree or more

Effect on education: Dealing with migration

- o Individuals age 18-25 migrate often, especially to attend college
 - $\rightarrow~\approx 50\%$ of freshmen in colleges > 100 mi away from perm home (HERI at UCLA)
 - \implies Two strategies to deal with migration:

Effect on education: Dealing with migration

- o Individuals age 18-25 migrate often, especially to attend college $\rightarrow \approx 50\%$ of freshmen in colleges > 100 mi away from perm home (HERI at UCLA) \implies Two strategies to deal with migration:
- Link to previous commuting zone → measure of migration
 → Restrict to ages 18-25 currently in their first year of college
- 2. Consider individual level PSID data \rightarrow can follow individuals over time
 - \rightarrow Restrict to high school graduates enrolled in college

Δy_{rt} :	change	in	1st-year	college	enrollment	ages	18-25
-------------------	--------	----	----------	---------	------------	------	-------

	$EnrolIment_t$	$Enrollment_{t+1}$
ΔIPW_{rt}	0.19^{**}	
	(0.09)	
***		·

Notes: ***p < 1%, **p < 5%, *p < 10%

- o A \$1,000 increase in imports
 - + Increases college enrollment by 19 bps

Δy_{rt} :	change	in	1st-year	college	enrollment	ages	18-25
-------------------	--------	----	----------	---------	------------	------	-------

	$EnrolIment_t$	$Enrollment_{t+1}$	
ΔIPW_{rt}	0.19^{**}	0.36^{*}	
	(0.09)	(0.2)	
*** < 107 **		-	

Notes: ***p < 1%, **p < 5%, *p < 10%

- o A \$1,000 increase in imports
 - + Increases college enrollment by 19 bps
 - + Significantly strong delayed effect on enrollment of 36 bps

Δy_{rt} :	change	in	1st-year	college	enrollment	ages	18-25
-------------------	--------	----	----------	---------	------------	------	-------

	$EnrolIment_t$	$Enrollment_{t+1}$
ΔIPW_{rt}	0.19^{**}	0.36^{*}
	(0.09)	(0.2)
*** . 107 ** . 1007 * . 1007		

Notes: ***p < 1%, **p < 5%, *p < 10%

- o A \$1,000 increase in imports
 - + Increases college enrollment by 19 bps
 - + Significantly strong delayed effect on enrollment of 36 bps
- o Similar results for high school completion in Greenland & Lopresti (2016)

Effect on education by wealth: ACS vs PSID

- + ACS counts college students as *new* households
 - observe last year commuting zone \rightarrow can test enrollment
 - cannot link to household's characteristics/wealth
- + PSID provides longitudinal data
 - can follow individuals over time
 - can link to family wealth and original CZ (restricted geocode data)
 - small sample, can use individual level regressions

Effect on education by wealth: ACS vs PSID

- + ACS counts college students as *new* households
 - observe last year commuting zone \rightarrow can test enrollment
 - cannot link to household's characteristics/wealth
- + PSID provides longitudinal data
 - can follow individuals over time
 - can link to family wealth and original CZ (restricted geocode data)
 - small sample, can use individual level regressions
- + Proxy wealth by income \rightarrow CPS treats college as temporarily away
 - can link to family income and original commuting zone
 - can use individual level regressions

Linear prob model on college enrollment, $e_{nrt} \in \{0, 1\}$

$$e_{nrt} = \sum_{q} \beta^{q} \mathbb{I}_{\left\{Y_{h(n)rt} \in q\right\}} \Delta IPW_{rt} + \theta_{Y}Y_{h(n)rt} + \theta_{e}e_{h(n)rt}^{p} + \delta X_{rt} + u_{nrt}$$

+ Quartiles by households' wealth Y_{nrt} :

- groups: < 25%, 25% - 50%, 50% - 75%, > 75%

+ controls: family wealth + HH's head education + regional-level

Effect on education by Wealth level - PSID

College enrollment by wealth quartiles β^q

o Enrollment increases for topwealth households, decreases for bottom-wealth.

- 1. Trade shocks detrimental labor market outcomes
 - $\rightarrow\,$ especially for less educated workers
- 2. Young individuals (18-25 and HS graduates) adjust by enrolling into college
- 3. Enrollment increase driven by high school graduates in richest households

Model

Trade model with heterogeneous HHs and skill acquisition

 \rightarrow SOE with multiple regions trading goods and assets within and across borders

Trade model with heterogeneous HHs and skill acquisition

 \rightarrow SOE with multiple regions trading goods and assets within and across borders

- + Technologies: two sectors, services and manufacturing
 - o Intermediate goods \rightarrow Tradable
 - Inputs: college workers & non-college workers
 - o Final goods \rightarrow Non-tradable
 - Inputs: domestic region-specific & imported intermediate goods
Trade model with heterogeneous HHs and skill acquisition

 \rightarrow SOE with multiple regions trading goods and assets within and across borders

- + Technologies: two sectors, services and manufacturing
 - o Intermediate goods \rightarrow Tradable
 - Inputs: college workers & non-college workers
 - o Final goods \rightarrow Non-tradable
 - Inputs: domestic region-specific & imported intermediate goods
- + Households/Workers: continuum & finitely-lived
 - o Education: one-time decision at age $j=1 \rightarrow {\rm preference\ shock}$
 - o Sector-Region (LLM): switch at any age \rightarrow utility cost + preference shock
 - o Intervivos transfer to kid at age $j = J_k \rightarrow$ bequest motive
 - o Idiosyncratic labor risk, save in bonds return r^* , retire at J_R

Intermediate goods – tradable – sector i = s, m

$$\max_{L_{cri},L_{nri}} p_{ri} z_{ri} \left(\frac{\gamma_{ri} L_{cri}^{\frac{\sigma-1}{\sigma}} + (1-\gamma_{ri}) L_{nri}^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}} - w_{cri} L_{cri} - w_{nri} L_{nri}$$

+ L_{cri} and L_{nri} denote college and non-college labor in region r and sector i

- $+ w_{cri}$ and w_{nri} denote college and non-college wages
- $+ z_{ri}$ sector productivity

Intermediate goods – tradable – sector i = s, m

$$\max_{L_{cri},L_{nri}} p_{ri} z_{ri} \left(\frac{\gamma_{ri} L_{cri}^{\frac{\sigma-1}{\sigma}} + (1-\gamma_{ri}) L_{nri}^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}} - w_{cri} L_{cri} - w_{nri} L_{nri}$$

+ L_{cri} and L_{nri} denote college and non-college labor in region r and sector i

- $+ w_{cri}$ and w_{nri} denote college and non-college wages
- $+ z_{ri}$ sector productivity

Key assumptions:

o college and non-college workers are substitute: $\sigma > 1$

o Service is more intensive in college workers: $\gamma_{rs} > \gamma_{rm}$ (Cravino and Sotelo, 2018)

Decline in manufacturing w.r.t. services \rightarrow lower demand for non-college w.r.t. college workers

Final goods – non-tradable – sector i = s, m

+ Technology:
$$Q_{ri} = \left[\omega^{\frac{1}{\eta_i}} D_{ri}^{\frac{\eta-1}{\eta}} + (1-\omega)^{\frac{1}{\eta}} (D_{ri}^*)^{\frac{\eta-1}{\eta}}\right]^{\frac{\eta}{\eta-1}}$$

 $\rightarrow D_i$ composite of domestic intermediates and D_i^* imported one

$$D_{ri} = \left(\sum_{r' \in \mathcal{R}} \alpha_{rr'}^{\frac{1}{\omega}} d_{rir'}^{\frac{\theta}{\theta-1}}\right)^{\frac{\theta-1}{\theta}}$$

+ Profits
$$\max_{\{d_{rir'}\}_{r'}, D_{ri}^*} \{q_{ri}Q_{ri} - \sum_{r' \in \mathcal{R}} \tau_{rir'} p_{r'i} d_{rir'} - p_i^* \tau_i^* D_{ri}^* \}$$

$$\rightarrow$$
 price of final good $q_{ri} = \left[\omega \bar{p}_{ri}^{1-\eta} + (1-\omega) \left(\tau_i^* p_i^*\right)^{1-\eta}\right]^{\frac{1}{1-\eta}}$

 $\rightarrow \bar{p}_{ri}$ ideal price index for the domestic Armington aggregator

 $+ \tau_i^* \geq 1$ iceberg cost \rightarrow control *trade openness*

 \rightarrow Dynastic framework with three stages: pre-education, education and working

 \rightarrow Dynastic framework with three stages: pre-education, education and working

Value of a worker at age j in labor market $\ell = (r,i)$

$$V_{j}(a, x, \ell, e) = \max_{c_{s}, c_{m}, a'} \left\{ U(c) + \mathbb{E} \left[\max_{\ell'} \left\{ \epsilon_{\ell'} - \psi_{je}(\ell, \ell') + \beta V_{j+1}(a', x', \ell', e) \right\} \right] \right\}$$
$$q_{r}c + q^{a}a' \leq w_{e\ell}x\bar{h} + (1 + r^{*})q^{a}a, \qquad a' \geq \underline{a}_{j,e}$$

o consumption $c = C(c_s, c_m)$, price index $q_r = Q(q_{rs}, q_{rm})$.

- o $\epsilon_{\ell'}$ realized and ℓ' choice at end of period \rightarrow after c and a' chosen Key departure from ACM (2010), CDP (2019), etc.
- \circ education e is fixed

 \rightarrow Dynastic framework with three stages: pre-education, education and working

Value of a worker at age j in labor market $\ell = (r,i)$

$$V_{j}(a, x, \ell, e) = \max_{c_{s}, c_{m}, a'} \left\{ U(c) + \mathbb{E} \left[\max_{\ell'} \left\{ \epsilon_{\ell'} - \psi_{je}(\ell, \ell') + \beta V_{j+1}(a', x', \ell', e) \right\} \right] \right\}$$
$$q_{r}c + q^{a}a' \leq w_{e\ell}x\bar{h} + (1 + r^{*})q^{a}a, \qquad a' \geq \underline{a}_{j,e}$$

o consumption $c = C(c_s, c_m)$, price index $q_r = Q(q_{rs}, q_{rm})$.

- o $\epsilon_{\ell'}$ realized and ℓ' choice at end of period \rightarrow after c and a' chosen Key departure from ACM (2010), CDP (2019), etc.
- \circ education e is fixed

 \rightarrow Dynastic framework with three stages: pre-education, education and working

Value of college ${\it e}={\it c}$ at age j=1,2

$$V_j(a, x, \ell, \boldsymbol{c}) = \max_{c_s, c_m, a'} \left\{ U(c) + \mathbb{E} \left[\max_{\ell'} \left\{ \epsilon_{\ell'} - \psi_{je}(\ell, \ell') + \beta V_{j+1}(a', x', \ell', \boldsymbol{c}) \right\} \right] \right\}$$
$$q_r c + q^a a' + q_{rs} \kappa \leq w_{n\ell} x \frac{\bar{h}}{2} + (1 + r^*) q^a a, \qquad a' \geq \underline{a}_{j,c}$$

o κ cost college

- o work part-time and receive non-college wage
- o looser borrowing limit for college $\underline{a}_{i,c}$

Newborns and Transfers

- \rightarrow Dynastic framework with three stages: pre-education, education and working
 - $+\,$ Value to a newborn who receives a transfer Φ

$$\mathcal{V}_0(\Phi, x_p, \ell_p, e_p) = \mathbb{E}\left[\max_e \left\{-\phi \mathbb{I}_{\{e=c\}} + \max_\ell \left\{\epsilon_\ell - \psi_0(\ell_p, \ell) + V_1(\Phi, \boldsymbol{x}, \ell, e)\right\}\right\}\right]$$

$$\label{eq:phi} \begin{split} \phi \sim F_e(e_p), \ x \sim F_x(x_p), \ \text{for parental states } (e_p, x_p). \end{split}$$
 (Abbott, Gallipoli, Meghir, and Violante, 2019), (Daruich, 2020)

+ Transfer at age $j = J_k$ $\max_{\Phi \ge 0} \left\{ V_{J_k}(a - \Phi, x_p, \ell_p, e_p) + \hat{\beta} \mathcal{V}_0(\Phi, x_p, \ell_p, e_p) \right\}$

Education Policy

Education Policy

Calibration

Calibration - key nationwide parameters

o Household: period = 2 years, $J_k = 15$, $J_R = 25$

+ $\beta = 0.98 \rightarrow$ wealth/income $\approx 3.5-4$ + $\hat{\beta} = 0.85 \rightarrow$ transfer/income ≈ 0.5

- o College decision
 - + $\kappa
 ightarrow$ college pprox 36% of workers

$$+ \; \ln \phi \sim \mathcal{N}(m_{e_p}, \sigma^2)$$
, for $e_p = c, m_{e_p}$

- inter-generational education persistence $\approx 77\%$
- + $\underline{a}_c \rightarrow$ borrow 50% of college (for 14 years)

Sector decision

+
$$\varepsilon_i \sim Gumbel(-\rho\gamma,\gamma)$$

 $+ \psi^u
ightarrow$ annual sector persistence pprox 97%

(Artuc, Chaudhuri, and McLaren, 2010)

o Consumption bundle:

$$\begin{array}{l} + \ c = \left(\sum_{i} \nu_{i}^{\frac{1}{\rho}} c_{i}^{\frac{\rho-1}{\rho}}\right)^{\frac{\rho}{\rho-1}} \\ + \ \rho = 0.5 \\ + \ \nu_{s} = 0.81 \text{ and } \nu_{m} = 0.19 \\ + \ \text{match} \ \text{aggregate} \ \text{labor} \\ \text{share by sector} \end{array}$$

+ Three regions

- differ only in productivities, z_{rs} and z_{rm} , and factor intensities, γ_{rs} and γ_{rm}
- + Match employment share + skill compensation by regions in 1990
 - West \rightarrow low exposure (low manufacturing labor share)
 - Midwest \rightarrow high exposure (high manufacturing labor share)
 - North-East \rightarrow mid exposure (average manufacturing labor share)
 - $\rightarrow\,$ choose z_{rs} and z_{rm} keeping income per-worker across regions approx constant
- + Choose domestic trade costs, $au_{rmr'}$, to match domestic trade shares (CFS for 1993)

Modeling trade openness - nationwide

Main Exercise:

- At t=0 the economy is at a steady state with high τ_m^* , and τ_s^*
 - + "Closed economy" calibrated to 1990
 - $+\,$ home-bias: services \approx 98%, and manuf \approx 90%
- o At t = 1, au_m^* unexpectedly decrease $(au_s^*$ as well)
 - $+\,$ Large decline in the cost of importing manufacturing goods
 - + A sudden and permanent shock
 - $\ + \$ The economy slowly converges to the new steady-state
 - + "Open economy" calibrated to the 2010s \rightarrow manuf h-b $\approx 75\%$

The dynamic effects of trade openness

- 1. Cross-regional differences
- 2. Who goes to college more?
- 3. The welfare consequences of trade openness
- 4. Skill acquisition as margin of adjustment

Real wages: winners and losers

- o Services expand and manufacturing contracts
- o Wages respond accordingly

Real wages: winners and losers

con-

ac-

Real wages: winners and losers

- Services expand and manufacturing con-
- o Wages respond accordingly
- Effect depends on exposure to the shock
- Persistent effects

Wage premium increases ...

o Expansion in services leads to higher wage premium

Wage premium increases ...

- o Expansion in services leads to higher wage premium
- Effect is larger for the highly exposed region

Wage premium increases ...

- o Expansion in services leads to higher wage premium
- Effect is larger for the highly exposed region
- Larger increase on impact than in the longrun

... and college enrollment increases as well

o Increased wage premium leads to higher college enrollment

... and college enrollment increases as well

- o Increased wage premium leads to higher college enrollment
- Effect is larger for the highly exposed region

Cross-Regional Regression: model vs data

o Model matches college enrollment regression

- 1. Cross-regional differences
- 2. Who goes to college more?
- 3. The welfare consequences of trade openness
- 4. Skill acquisition as margin of adjustment

Who goes to college more?

- College enrollment increases mostly in the high exposure region.
- As in data, the increase is concentrated in wealthy household.

Who goes to college more?

Who goes to college more?

Large changes in transfers for households in manufacturing

- decline sharply in manufac-
- Explains the differential in college enroll-

Large changes in transfers for households in manufacturing

- 1. Cross-regional differences
- 2. Who goes to college more?
- 3. The welfare consequences of trade openness
- 4. Skill acquisition as margin of adjustment

Uneven welfare gains of trade

Consumption Equivalents by region

 Welfare gains: small for low-exposure large for high-exposure.

Uneven welfare gains of trade

- Welfare gains: small for low-exposure large for high-exposure.
- Gains in high exposure region are very heterogeneous
- Short run effects largely driven by sector.

Uneven welfare gains of trade

Consumption Equivalents by region

- Welfare gains: small for low-exposure large for high-exposure.
- Gains in high exposure region are very heterogeneous
- Short run effects largely driven by sector.
Uneven welfare gains of trade

Consumption Equivalents by region

- Welfare gains: small for low-exposure large for high-exposure.
- o Gains in high exposure region are very heterogeneous
- Short run effects largely driven by sector.

Uneven welfare gains of trade

Consumption Equivalents by region

Midwest Services 6 % from closed steady-state Δ -O-College - Impact -Non-College - Impact → College - After a generation -Non-College - After a generation -2 -4 -6 3 Wealth Quartile

- Welfare gains: small for low-exposure large for high-exposure.
- o Gains in high exposure region are very heterogeneous
- Short run effects largely driven by sector.
- o Welfare differentials disappear after a generation

- 1. Cross-regional differences
- 2. Who goes to college more?
- 3. The welfare consequences of trade openness
- 4. Skill acquisition as margin of adjustment

 \rightarrow Caveat: Focus on exposed region in extreme case of an "island" model

 \rightarrow Caveat: Focus on exposed region in extreme case of an "island" model

- o Education is a type inherited from parents
 - + Constant over a life-time
 - + Still have to pay for college
 - + Parents choose transfers optimally
 - + Sectoral choice as before
- $\rightarrow\,$ education is not a margin of adjustment any more

Fixed Education induces larger wage premium

- o Wage premium permanently higher
- Part of wage of premium comes form sectoral composition

Welfare gains differences persist with Fixed Education

Welfare gains differences persist with Fixed Education

Welfare gains differences persist with Fixed Education

Newborn's CEV with Endogenous and Fixed education

gain differentials lessen with endogenous education after a generation ...

- but they persist with fixed education.
- + For new generations. the redistributive effects of endogenous education are key on impact.

- o Trade openness has very different effects across regions
- o Services expand \rightarrow wage premium increases \rightarrow college enrollment increases + Effect concentrated in wealthier households and/or in services
- Welfare implications:
 - + Short-run: uneven gains and losses driven by region and sector
 - + Long-run: only gains, more even due to endogenous skill acquisiton

Conclusions

Conclusions:

- o Evidence: trade shocks
 - + more detrimental for less educated workers
 - + increase college enrollment, especially for high-income families.
- o Model: Consistent with evidence.
 - + Endogenous education alters the long-run distribution of welfare gains

Conclusions

Conclusions:

- o Evidence: trade shocks
 - + more detrimental for less educated workers
 - + increase college enrollment, especially for high-income families.
- o Model: Consistent with evidence.
 - + Endogenous education alters the long-run distribution of welfare gains

Next steps:

- Model:
 - $+\,$ Improve calibration: Target calibration to specific changes over time,...
 - + Fix bug in multi-region fixed education model
 - + Policy exercises: college subsidies,...

Conclusions

Conclusions:

- o Evidence: trade shocks
 - + more detrimental for less educated workers
 - + increase college enrollment, especially for high-income families.
- o Model: Consistent with evidence.
 - + Endogenous education alters the long-run distribution of welfare gains

Next steps:

- Model:
 - $+\,$ Improve calibration: Target calibration to specific changes over time,...
 - +~ Fix bug in multi-region fixed education model
 - + Policy exercises: college subsidies,...

Thank you!!

Appendix

Measuring trade shocks – Autor, Dorn, & Hanson (2013)

Effect on education by income level

College enrollment by income quartiles β^q

Effect on education by income level

College enrollment by income quartiles β^q : effect by sector

Uneven Welfare gains of trade

 Workers with and without a college education gain on impact

Uneven Welfare gains of trade

- Workers with and without a college education gain on impact
- o Poor households with a college education gain the most.

Fixed Education induces larger wage premium

Migration responds to trade shocks, only for the young

Δy_{rt} : change in migration by age group		
	Age $18-25$	Age $30 - 55$
ΔIPW_{rt}	0.021^{***}	0.001
	(0.01)	(0.01)

Notes: *** p < 1%, ** p < 5%, *p < 10%

