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1 Introduction

High levels of inequality have made redistributive policies a core topic in recent policy
debates. Two key components of redistributive policies are means-tested transfers and
progressive income taxes. Both policies can significantly alter the income distribution. In
the United States, targeted transfers amount to almost 25% of income for the poorest
income quintile, while income taxes reduce richest-quintile income by about 30%.1 The
optimal design of these two tools, targeted transfers and progressive income taxes, is thus
of paramount importance.

In this paper, we study the joint optimal design of targeted transfers and progressive
income taxes. We do so in two steps. We first develop a simple analytical model to inspect
the role of transfers in the optimal fiscal system, and characterize their interaction with
income-tax progressivity. Second, we calibrate a rich dynamic model of the U.S. economy
and use it to quantify the optimal levels of transfers and income-tax progressivity. We
pursue a Ramsey approach and endow a planner with flexible functions for transfers and
income taxes, which we refer to as the tax-and-transfer (t&T ) system.

Our approach has several advantages. The functional forms we use resemble current
policies implemented by many countries. Thus, our analysis sheds light on the optimal
use of currently available instruments. Furthermore, the Ramsey approach is suitable for
a rich quantitative evaluation with empirically realistic efficiency and redistribution con-
cerns. Finally, the instruments we use are simple and characterized by few economically
intuitive parameters. Yet they are flexible enough to generate nonlinear, and potentially
non-monotonic, overall t&T schedules, features often found to be optimal in the Mir-
rleesian literature. Thus, the flexibility of our Ramsey approach allows us to build new
intuition on the typical optimal taxation tradeoffs.

We present two main findings. First, the optimal t&T system typically features
more progressive average than marginal rates so as to redistribute while preserving effi-
ciency. Adding a transfer to progressive taxes precisely allows the planner to disentangle
average from marginal rates, thus generating large welfare gains—systematically close to
the second-best allocation in the simple analytical model. Second, using the dynamic
quantitative model, we find that transfers should be larger than currently in the United
States and financed with moderate income-tax progressivity. We further use the quanti-
tative model to analyze how the income distribution shapes the optimal t&T system and
to explore the quantitative importance of non-monotonic marginal t&T rates on welfare.

The analytical model builds on the work in Heathcote, Storesletten, and Violante
(2017). We assume a continuum of households who face a static consumption-labor
supply decision subject to idiosyncratic labor risk. We endow a utilitarian planner with
a log-linear income tax and a lump-sum transfer. The key role of transfers has long been

1See Section 3.4 and Appendix B.1 for definitions of income, taxes, and transfers.
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emphasized in the Mirrlees literature (Saez 2001). Furthermore, as we show, adding
a transfer to the log-linear tax function substantially improves the fit to the U.S. t&T

system.
We use local approximations in the analytical model to derive a closed-form formula

for welfare that shows an optimal negative relation between transfers and income-tax
progressivity, due to both efficiency and redistribution concerns. Higher income-tax
progressivity and larger transfers both discourage labor supply. In turn, a planner finances
larger transfers with lower progressivity to restore labor supply incentives. We refer
to this channel as the efficiency concern. In terms of redistribution, a planner aims to
decrease dispersion in consumption. Higher income-tax progressivity and larger transfers
both reduce consumption dispersion. The larger the tax progressivity, the lower the
consumption dispersion and the smaller the welfare gain from transfers. Thus, larger
transfers are optimally financed with less progressive income taxes.

We then use an illustrative calibration of this simple model to globally compute the
optimal transfers and income-tax progressivity. We find that transfers should be large
and, thus, income-tax progressivity should be low. Redistribution is achieved via generous
transfers, and thus progressive average rates, while efficiency is preserved with low income-
tax progressivity, and thus flatter marginal rates. Furthermore, the optimal log-linear
tax with a transfer generates welfare gains almost as large as the Mirrlees allocation—a
result that we show to be robust across several calibrations. Intuitively, the planner
has two instruments, a transfer and an income-tax progressivity, to achieve two targets,
redistribution and efficiency.

We confirm these findings in a rich, quantitative Bewley-Huggett-Aiyagari incomplete-
market model calibrated to the U.S. economy. We enrich the set of fiscal instruments and
endow the planner with targeted transfers that, in line with current practices, phase out
with both labor and capital income. The phase-out of transfers, combined with progres-
sive income taxes, allows for non-monotonic marginal t&T rates. We estimate the tax
and the transfer functions using household-level data. We also incorporate an empirically
realistic process for idiosyncratic labor risk, with a thick right tail of productivity and
higher-order moments of income risk, to accurately capture redistribution needs in the
economy. The model produces labor supply elasticities and wealth effects in line with the
data and thus accurately captures efficiency concerns as well. We consider once-and-for-
all changes to the fiscal instruments and incorporate transitions toward the new steady
state in our welfare computations.

The optimal t&T system in the quantitative model is substantially more redistributive
than the current system in the United States. Optimal transfers amount to $19,800 (2012
U.S. dollars) per year for the lowest-income household.2 This number implies an income

2As we discuss in Section 3.4, we report transfers per household, as it is the unit of calibration of the
quantitative model.
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floor of 23% of mean income. Transfers optimally phase out, albeit at a slow rate, such
that a household with median income receives a transfer of about $3,700. In line with
our analytical findings, large transfers are optimally financed with moderate income-tax
progressivity, at a level only slightly higher than in the current U.S. system. The optimal
system implies large welfare gains of 6.00% in consumption equivalent terms. These
welfare gains are largely due to better insurance and redistribution. In addition, despite
a large drop in aggregate labor, there are small efficiency improvements because of a better
allocation of hours worked across households. While welfare gains primarily accrue to
the poor, 76% of households benefit from the reform.

A substantial part of the welfare gains in the benchmark plan can be achieved with
either of two common tax proposals: a universal basic income (UBI) or an affine plan. In
terms of tax instruments, the UBI plan eliminates the phase-out of transfers but still
optimizes the progressivity of income taxes. The affine plan is a UBI financed with
flat income taxes. The optimal UBI plan implies a lump-sum transfer of $18,700 per
household, financed with barely progressive income taxes: the marginal income-tax rate
averages 56% for the poorest income quintile and 61% for the richest income quintile. As
the optimal UBI plan features almost flat taxes, the optimal affine plan resembles the
UBI one. The affine plan features a lump-sum transfer of $20,300 and a tax rate of
60%. The welfare gain of the UBI is 5.36% in consumption equivalent terms, while
the affine gains are 5.26%, both close to the gains in the benchmark plan. Thus, our
framework is supportive of a lump-sum transfer provided that it is financed with the right
income-tax progressivity. Alternatively, a plan with transfers phasing out implies lower
income-tax rates, which may be easier to implement in practice.

The UBI and affine experiments point to the importance of disentangling average
and marginal rates and shed light on the relative importance of the two standard ele-
ments in the Mirrlees literature: the positive intercept and the U-shape of the marginal
rates. Transfers, even if lump sum, allow to separate the progressivity of average and
marginal t&T rates. In contrast, the optimal log-linear plan with no transfers tightly
links marginal to average rates and thus delivers smaller welfare gains, at only 2.88%. Ad-
ditionally, the phasing out of transfers allows for non-monotonic marginal rates, which
delivers only modest additional welfare gains.

Finally, we use our quantitative model to show that the income distribution shapes
the negative relation between transfers and income-tax progressivity. In particular, the
right tail of the income distribution shifts this relation: the lower the income concentra-
tion at the top, the lower the income-tax progressivity for each level of transfer. Yet,
income concentration at the top barely affects the optimal level of transfers, and only
the income-tax progressivity adjusts. In contrast, when bottom-income households are
richer, the optimal income-tax progressivity for each transfer does not change, but the
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optimal transfers decrease—implying larger income-tax progressivity, despite lower in-
equality. In brief, optimal transfers are driven by the left tail of the income distribution,
whereas income-tax progressivity is determined by the right tail of the distribution.

Related literature. This paper belongs to a large literature on optimal taxa-
tion. Seminal papers in the Mirrleesian tradition include Mirrlees (1971), Diamond
(1998), and Saez (2001). At a general level, our Ramsey approach with flexible t&T

functional forms allows for a quantitative evaluation of the main tradeoffs discussed in
this literature within a rich dynamic model.

Our paper relates more closely to Heathcote and Tsujiyama (2021), which compares
a fully nonlinear Mirrlees plan to a log-linear tax system in a static environment. In a
setup comparable to theirs, we show that adding an intercept to a log-linear income-tax
function comes systematically close to the Mirrlees plan—a result that holds across several
calibrations, including theirs (see Section 2). We further consider targeted transfers and
embed our analysis in a dynamic general equilibrium model in Section 4. Also related to
our paper are Chang and Park (2021) and Park (2022), which use a variational approach
to derive a tax formula in an Aiyagari model with Greenwood, Hercowitz, and Huffman
(1988) preferences. Our Ramsey approach allows for intuitive insights as well as the
inclusion of transitions from the calibrated steady state in welfare computations.3

Our quantitative framework relates to several papers interested in optimal tax pro-
gressivity in incomplete-market models. An early contribution is Conesa and Krueger
(2006), and subsequent work has focused on: transitional dynamics (Bakış, Kaymak,
and Poschke 2015), superstars and entrepreneurs (Brüggemann 2021; Kindermann and
Krueger 2022), human capital accumulation (Badel, Huggett, and Luo 2020; Krueger
and Ludwig 2016; Peterman 2016), negative income tax programs (Lopez-Daneri 2016),
and Laffer curves (Guner, Lopez-Daneri, and Ventura 2016; Holter, Krueger, and Step-
anchuk 2019). Our paper also relates to recent quantitative analyses of UBI policies,
with a specific focus on human capital (Daruich and Fernández 2022; Luduvice 2021),
labor market frictions (Jaimovich, Saporta-Eksten, Setty, and Yedid-Levi 2022; Rauh
and Santos 2022), and consumption taxes (Conesa, Li, and Li 2021).

Two recent works analyze transfers and progressive taxes in a rich quantitative set-
up. Guner, Kaygusuz, and Ventura (2021) develops a rich modeling of the household,
while Boar and Midrigan (2022) focuses more specifically on the role of wealth taxes. In
line with our quantitative finding, both papers find that an affine plan is welfare improv-
ing.4 Our Ramsey approach with flexible tax instruments allows for new insights on the

3Our paper also relates to advances in New Dynamic Public Finance—such as Kapička (2013); Farhi
and Werning (2013); Golosov, Troshkin, and Tsyvinski (2016); Findeisen and Sachs (2017); Stantcheva
(2017); and Boerma and McGrattan (2020)—and connects with the literature using microsimulations
to evaluate fiscal policies; see Colombino and Islam (2022) for an example evaluating Universal Basic
Income proposals.

4See also the recent work in Carroll, Luduvice, and Young (2022) for similar findings.
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tradeoff between transfers and income-tax progressivity. Additionally, the phase-out of
transfers allows us to consider non-monotonic marginal rates, a common property of the
optimal Mirrleesian t&T system.

Roadmap. Section 2 presents the analytical model. Section 3 contains the quanti-
tative model and its calibration. Section 4 analyzes the optimal fiscal plan. Section 5
discusses the effect of income distribution on optimal transfers and income-tax progres-
sivity and other robustness checks. Section 6 concludes.

2 A simple analytical model

We start with a simple analytical model to highlight the key role of transfers in the optimal
fiscal system. We build on Heathcote, Storesletten, and Violante (2017) and propose a
tractable heterogeneous-agent model in which a government uses a log-linear income tax
to finance public spending and a lump-sum transfer. We use local approximations to
derive an optimal negative relation between transfers and income-tax progressivity, and
further show that transfers should typically be positive. We resort to numerical methods
and obtain large optimal transfers in this simple economy. In addition, welfare gains
under the optimal plan are almost as large as in the second-best (Mirrlees) allocation.

We end this section showing that the empirical fit to the U.S. t&T system substantially
improves when adding an intercept to the log-linear tax. Importantly, the fit improves the
most for bottom and top income earners, precisely where the tax matters for redistribution
and efficiency purposes.

2.1 Environment: A static economy

The economy is populated by a continuum of ex-ante homogeneous households, a rep-
resentative firm, and a utilitarian government. Households are hand-to-mouth, they
value consumption c and leisure 1 − n, and their labor productivity z is log-normally
distributed. The representative firm uses a linear technology to transform labor into
output. The government finances exogenous government spending G and a lump-sum
transfer T with log-linear labor taxes.5

Taxes.—A household with labor income y pays taxes T (y) = y − λy1−τ , where τ

captures the progressivity and λ the level of taxes. For τ = 0, tax rates are flat and equal
to 1−λ. When τ > 0 (τ < 0), marginal and average tax rates are increasing (decreasing)
in income. When τ = 1, after-tax income is equalized ∀y, implying full redistribution.

5This tax function has been widely used since Feldstein (1969), and more recently by Benabou (2000)
and Heathcote, Storesletten, and Violante (2017).
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Households.—Household i chooses consumption ci and labor ni to maximize utility

u(ci, ni) = ln ci −B
n1+φ
i

1 + φ
(1)

subject to a static budget constraint

ci = λ (zini)
1−τ + T. (2)

We assume a log-normal distribution for idiosyncratic productivity z, with variance vω

controlling the degree of heterogeneity across households. The log-normal assumption,
together with log utility and hand-to-mouth households, is convenient to derive a closed-
form solution for welfare when transfers are zero.6

Government.— The government budget constraint is

G+ T =

∫
zinidi− λ

∫
(zini)

1−τ di. (3)

Technology.— The resource constraint is∫
cidi+G =

∫
zinidi. (4)

Next, we derive a formula for welfare as a function of progressivity τ in the tractable
case of T = 0. Then, we use local approximations around that point to characterize wel-
fare as a function of τ and T . All derivations in this section are relegated to Appendix A.

2.2 Optimal income-tax progressivity with no transfers

When transfers are zero, the optimal labor policy is constant across households. Maxi-
mizing the household’s utility (1) given the budget constraint (2) yields an optimal labor
policy function in closed form,

n0(τ) ≡
(
1− τ

B

) 1
1+φ

, (5)

where the 0 subscript stands for zero transfers. Equation (5) shows a one-to-one negative
relationship between n and τ . Given this simple policy function, we can compute output,

6Without transfers, a no-trade theorem applies when z follows a random walk, as shown in Heathcote,
Storesletten, and Violante (2017). We deviate from the no-trade conditions by including transfers, which
is why we assume a simpler static model. The no-saving assumption is relaxed in the quantitative
model of Section 3. In a previous version, we derived an analytical relation between optimal transfers
and progressivity with insurable and uninsurable shocks, as in Heathcote, Storesletten, and Violante
(2017). While the expression gets cumbersome, the negative relationship between progressivity and
transfers remains.
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Y0(τ) = n0(τ), and the tax function level parameter λ0(τ) from the government budget
constraint. Then, for each progressivity τ , we can derive aggregate welfare as the sum of
households’ utility:

W (τ) = log (n0(τ)−G)︸ ︷︷ ︸
Size

−1− τ

1 + φ︸ ︷︷ ︸
Labor disutility︸ ︷︷ ︸

Efficiency

−(1− τ)2
vω
2︸ ︷︷ ︸

Redistribution

. (6)

This expression has a straightforward economic interpretation. The first two terms
capture the efficiency concerns governing the optimal choice of τ . Because progressivity
depresses labor supply, a larger τ reduces the size of the economy, and thus aggregate
consumption C0(τ) = n0(τ) − G. Yet a larger τ also reduces labor disutility −B n1+φ

1+φ
,

which, using equation (5), equals the second term in the formula.7 The last term is pro-
portional to the variance of log consumption and captures redistribution concerns. Larger
progressivity reduces dispersion in consumption, which is welfare improving. As such,
heterogeneity increases optimal progressivity.

We use the welfare formula in (6) to numerically illustrate the forces determining
optimal progressivity τ . The Frisch elasticity φ−1 is set to 0.4, and the labor disutility
parameter B is chosen such that labor supply n0(τ) = 0.3. Progressivity is fixed at
τ = 0.18 and government spending is set to g ≡ G/Y = 23% of output, based on
the U.S. estimates of Heathcote, Storesletten, and Violante (2017). We set vω = 0.268

to match a variance of log consumption of vc = 0.18, as also measured in Heathcote,
Storesletten, and Violante (2017).

Optimal progressivity is zero with a representative agent (vω = 0) and no public
spending. Positive spending decreases progressivity to τ = −0.26. This negative rela-
tion between G and τ relates to the notion of “fiscal pressure” discussed by Heathcote,
Storesletten, and Violante (2017) and further developed by Heathcote and Tsujiyama
(2021): a planner finances larger spending with less progressive taxes to incentivize labor
supply.8 Finally, adding heterogeneity increases progressivity to τ = 0.24 because of
redistribution concerns.

As τ is positive, average and marginal tax rates both increase with income. The
presence of transfers will loosen the tight link between average and marginal rates, as we
discuss next.

7When vω = 0, the progressivity τ that maximizes (6) implements the representative-agent first-best
allocation. See Appendix A.2 for a derivation of the representative-agent case.

8See Ayaz, Fricke, Fuest, and Sachs (2022) for a related discussion.
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2.3 Optimal income-tax progressivity with transfers

With non-zero transfers, the policy function for labor does not admit a closed-form solu-
tion. Instead, we use the implicit function theorem and approximate the policy around
the case with T = 0:

n̂i ≈ n0(τ)−
T

1 + φ

n0(τ)

n0(τ)−G
exp

(
−τ(1− τ)

vω
2

)
z
−(1−τ)
i . (7)

Note that labor supply falls in transfers because of the wealth effect.
Using this approximation, we follow similar steps as in the case without transfers to

obtain an expression for welfare as a function of progressivity τ and transfer T :

W (τ, T ) = W (τ, 0) + T

[
Ωe(τ, vω) + Ωr(τ, vω)

]
. (8)

The square brackets capture the marginal effect of transfers T on welfare for a given pro-
gressivity level τ . As we show below, the marginal effect of transfers decreases with τ ,
which explains an optimally negative relation between τ and T . This effect can be decom-
posed in two terms: an efficiency term Ωe(τ, vω) and a redistribution term Ωr(τ, vω). We
discuss each term next.

When vω = 0, the term Ωe(·) captures an efficiency trade-off in the representative-
agent economy:

Ωe(τ, 0) ≡ uc(C0(τ))
∂Y ra(τ, T )

∂T

∣∣∣∣
T=0︸ ︷︷ ︸

Size<0

+un(n0(τ))
∂nra(τ, T )

∂T

∣∣∣∣
T=0︸ ︷︷ ︸

Labor disutility>0

, (8.a)

where Y ra and nra denote output and labor in the representative-agent economy. Output
decreases with transfers, and the welfare cost of smaller output is evaluated using the
marginal utility of consumption (size effect). At the same time, lower hours induce a
welfare gain, evaluated using the marginal utility of leisure (labor disutility effect). For
vω = 0, the term Ωe(·) depends on progressivity as follows.

Claim 1 When vω = 0, the welfare gains of transfers associated with efficiency decrease
with τ . That is, ∂Ωe(τ, 0)/∂τ < 0.

Larger progressivity reduces output, making it costlier to reduce output further with
transfers—that is, the size cost of transfers becomes larger. In addition, larger progressiv-
ity increases leisure, making it less valuable to increase leisure further with transfers—the
disutility gain of transfers becomes lower. Overall, both progressivity and transfers de-
press labor supply, making them substitutes in efficiency terms.
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When vω > 0, the overall efficiency term Ωe(·) is given as

Ωe(τ, vω) = Ωe(τ, 0) + uc(C0(τ))

[
∂Y (τ, T )

∂T

∣∣∣∣
T=0

− ∂Y ra(τ, T )

∂T

∣∣∣∣
T=0

]
, (8.b)

where the additional term captures the heterogeneity of wealth effects on labor sup-
ply. While non-monotonic in τ , this second term is typically small in our calibrations,
and ∂[Ωe(τ, vω)]/∂τ < 0 holds quantitatively so that the total efficiency gains of transfers
decrease with progressivity.9

Finally, the last term in (8) reflects redistribution concerns associated with transfers
when agents are heterogeneous:

Ωr(τ, vω) = E [uc(c0(τ))]− uc(C0(τ)) =
(1− τ)2

n0(τ)−G
vω, (8.c)

where c0(z, τ) is individual consumption, as in equation (2). This term captures dispersion
in consumption and is strictly positive as long as vω > 0 and τ < 1. Indeed, transfers are
welfare improving, as they reduce dispersion in marginal utilities of consumption. The
term Ωr(·) depends on progressivity as follows.

Claim 2 Under mild conditions, the welfare gains of transfers associated with redistri-
bution decrease with τ . That is, ∂Ωr(τ, vω)/∂τ ≤ 0.

This result is intuitive. Larger progressivity already reduces the dispersion in marginal
utilities such that there are fewer gains from reducing consumption dispersion even further
with higher transfers. Thus, transfers and progressivity act as substitutes to redistribute
resources. In the extreme case of τ = 1, after-tax incomes are equalized, and the redis-
tributive gains from having a positive transfer are zero; that is, Ωr(1, vω) = 0. Overall,
redistribution concerns strengthen the negative optimal relationship between transfers
and tax progressivity driven by efficiency concerns: the more generous the transfer T ,
the smaller the progressivity τ .

We use the welfare formula in equation (8) to evaluate the marginal value of transfers
at the illustrative calibration discussed above. We find that redistribution gains Ωr = 0.78

are larger than efficiency concerns Ωe = −0.54, implying that transfers should be positive
in the United States. We further use this formula to compute the optimal progressivity
τ for each transfer level T , which we report in Figure 1. As transfers T increase, the
optimal income-tax progressivity τ declines.

9See Appendix A.2 for a derivation of the representative-agent case and a more detailed discussion of
the additional term in (8.b). Appendix A.2 also discusses how the negative relation between transfers
and income-tax progressivity derived above compares to the negative relation between spending and
income-tax progressivity derived in Heathcote and Tsujiyama (2021).
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2.4 Optimal transfers

The welfare formula we derived is insightful on the optimal relationship between T and
τ , but it is based on an approximation around T = 0. Hence, we now pursue a numerical
solution of the model. The goal is twofold: to check the accuracy of the approximation
and to compute the optimal level of transfers.

The numerical solution confirms the optimal negative relation between transfers T

and progressivity τ around and away from T = 0, as Figure 1 shows. In addition, our
approximation accurately characterizes the optimal tax progressivity for a wide range
of transfers. Figure 1 also plots welfare as a function of transfers. The highest welfare
is achieved with a large lump-sum transfer combined with negative progressivity: T

amounts to roughly 24% of mean calibrated income, and income taxes are regressive,
with τ = −0.10.

Figure 2 plots the average and marginal t&T rates implied by the welfare maximizing
policy. The optimal t&T system is progressive in terms of average rates because of the
optimally large transfers. However, it is regressive in terms of marginal rates because of
the optimal negative τ . Thus, the optimal system features higher progressivity in average
than in marginal t&T rates–to achieve redistribution while preserving efficiency.

Comparison to the log-linear plan without a transfer.—Figure 2 also includes the aver-
age and marginal t&T rates of the optimal log-linear plan when transfers are constrained
to be zero. In this case, income-tax progressivity is high, at τ = 0.24, because a positive τ
is the only tool available for the planner to redistribute. However, in the absence of trans-
fers, redistribution through increasing average rates implies increasing marginal rates. A
lump-sum transfer allows to break the tight link between average and marginal rates
imposed by the log-linear function, which is welfare improving, as this simple calibration
suggests.

Comparison to the Mirrlees plan.—We compute the Mirrlees allocation to derive the
second-best nonparametric fiscal plan, which we also plot in Figure 2.10 The optimal log-
linear tax with a transfer comes remarkably close to the Mirrlees plan. Average rates are
very similar, and, while marginal rates are non-monotonic under the Mirrlees allocation,
marginal rates are comparable over a large domain of the income distribution. Consis-
tently, the optimal log-linear tax with a transfer generates a welfare gain of +0.90% in
consumption equivalent terms, almost as large as with the Mirrlees plan (+0.93%). In
contrast, the optimal log-linear plan without a transfer generates more modest gains, at
only +0.15%.

We further compare the welfare gains delivered under various alternative calibra-
tions. In particular, we present calibrations with a higher Frisch elasticity (as in Heath-
cote, Storesletten, and Violante 2017), a higher spending-to-output ratio, and with a

10See Appendix A.3 for more details on the derivation of the Mirrlees allocation.
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Pareto tail for productivity overlayed on the normal shock (as in Heathcote and Tsu-
jiyama 2021).11 We compute the optimal plan under different Pareto tails. For each
level of the Pareto tail, we adjust the variance of the normal shock to match the same
overall variance of log consumption, vc. We report the Pareto coefficient on the con-
sumption distribution, λc, and the Pareto coefficient of the income distribution, denoted
λy, is given by λy = (1 − τ)λc. We explore parameterizations for λc going from 2.69,
as in Heathcote and Tsujiyama (2021), to 3.38, as estimated in Toda and Walsh (2015)
using Consumer Expenditure Survey data from 1979 to 2004. Table 1 presents welfare,
in consumption-equivalent terms, for: the Mirrlees allocation, the log-linear tax with a
transfer, the log-linear tax without a transfer, and an affine tax—that is, a flat income
tax with a transfer.

The optimal log-linear tax with a transfer consistently generates welfare gains almost
as large as the Mirrlees allocation, regardless of the calibration. This result is intu-
itive. In this simple model, the government cares about redistributing at the bottom
while preserving efficiency at the top. The transfer precisely achieves redistribution at
the bottom, while income-tax progressivity controls the slope of marginal rates at the
top.

Whether the affine or the log-linear tax with no transfers performs well depends on
the calibration of the productivity shock, and in particular, on the thickness of the Pareto
tail. As the Pareto tail thickens, the Mirrlees plan features more increasing (i.e. steeper)
marginal rates at the top (Mankiw, Weinzierl, and Yagan 2009). This property of the
plan can be achieved with a progressive log-linear tax. Instead, when the Pareto tail
is thinner, marginal rates are flatter, and the planner uses a larger transfer to provide
redistribution. The Mirrlees plan resembles more an affine plan. The log-linear tax with
a transfer combines both features, achieving redistribution with transfers while, if needed,
implementing increasing marginal rates at the top.

Overall, the log-linear tax has been extensively used in quantitative work because
of its tractability, but it imposes significant constraints on the optimal plan. Adding
a transfer/intercept to the log-linear tax function retains tractability while consistently
generating welfare gains close to the second-best allocation.

2.5 Estimating transfers and income-tax progressivity

While the log-linear tax function fits well the overall t&T system in the United States
(Heathcote, Storesletten, and Violante 2017), we show that adding an intercept improves
the empirical fit substantially. Importantly, the fit improves for bottom and top income
earners, precisely where it matters most for redistribution and efficiency purposes.

11Our setup is simpler that in Heathcote, Storesletten, and Violante (2017), but actually comparable
to that in Heathcote and Tsujiyama (2021). See Appendix A.3 for more details.
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Figure 1: Optimal income-tax progressivity given transfers

Notes: This figure compares, for each transfer, the optimal income-tax progressivity implied by the
formula to the global (numerical) solution. It also shows, for each transfer, the welfare associated with
the optimal progressivity. We normalize welfare to be zero at the optimal policy.

Figure 2: Optimal tax-and-transfer system: Tax rates

Notes: This figure shows average rates (left panel) and marginal rates (right panel) of the optimal
tax-and-transfer system. The figure also plots optimal average and marginal rates in: (1) the opti-
mal log-linear plan without a transfer, denoted “No-transfer”; and (2) the Mirrlees allocation, denoted
“Mirrlees”. Income is normalized by calibrated mean income.
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Table 1: Welfare gains: Mirrlees and Ramsey plans

Mirrlees Log-linear Log-linear Affine
with T

Benchmark
vc = 0.18, λc = ∞, iφ = 2.5, g = 0.23 0.93% 0.90% 0.14% 0.84%

Heathcote, Storesletten, and Violante (2017)
vc = 0.18, λc = ∞, iφ = 2.0, g = 0.23 0.81% 0.79% 0.03% 0.70%

Heathcote and Tsujiyama (2021)
vc = 0.23, λc = 2.69, φ = 2.0, g = 0.19 2.07% 1.97% 1.65% 1.36%
Thinner Pareto tail: λc = 2.86 1.92% 1.85% 1.45% 1.45%
Thinner Pareto tail: λc = 3.38 1.78% 1.74% 1.09% 1.64%

Notes: This table reports, across several calibrations, welfare gains, in consumption-equivalent terms,
of implementing: (1) the Mirrlees plan, (2) the optimal log-linear plan with a transfer, (3) the optimal
log-linear plan without a transfer, and (4) and the optimal affine plan. vc denotes the variance of log
consumption, λc the thickness of the Pareto tail of the distribution of consumption, and g the spending-
to-output ratio, in the respective calibrations.

In particular, we present three estimates. First, we estimate the log-linear tax function
with no transfers, as in Heathcote, Storesletten, and Violante (2017). This function
can be easily estimated using ordinary least squares by regressing the log of after-t&T

income on the log of pre-t&T income. Second, we estimate the same tax function but
use income in levels and thus nonlinear least squares. Third, we add a transfer, also
using income in levels and nonlinear least squares. We construct pre-t&T and after-t&T

income at the household level using Current Population Survey (CPS) data for 2013. Our
measure of taxes and transfers includes: personal income federal and state taxes; payroll
taxes; tax credits, the most important being the Earned Income Tax Credit (EITC) and
the Child Tax Credit (CTC); Supplemental Nutrition Assistance Program (SNAP) and
housing assistance, imputed following the Congressional Budget Office (CBO) procedure;
and additional welfare transfers, as reported in the CPS. More details can be found in
Appendix B.1. For each estimate, the left panel in Figure 3 reports the difference between
actual and predicted t&T paid. The right panel reports the same difference relative to
pre-t&T income. Results are presented by 2.5% bins of pre-t&T income distribution.

The first estimate delivers a progressivity of τ = 0.18—as in Figure I.A in Heathcote,
Storesletten, and Violante (2017)—and fits the U.S. t&T function remarkably well, es-
pecially for a two-parameter tax function. Yet, it overestimates taxes paid at the top
and underestimates transfers at the bottom. Prediction errors in taxes paid for the top
income decile range from $10,000 to $50,000, while errors in transfers received at the
bottom 5% range from 20% to 40% of their pre-t&T income. The errors at the top
may have significant implications for the government’s revenues, while differences at the
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Figure 3: Estimated t&T system: Prediction errors

Notes: Prediction errors in taxes paid minus transfers received, data minus prediction. Errors are
reported for three estimates: (1) the log-linear income-tax function without a transfer, estimated on log
income; (2) the log-linear income-tax function without a transfer, estimated on income in levels; and (3)
the log-linear income-tax function with a transfer, estimated on income in levels. The left panel reports
absolute errors in dollars, while the right panel reports relative errors as a fraction of pre-t&T income,
by 2.5% bins of pre-t&T income distribution.

bottom may amplify redistribution concerns in the status quo. Estimating the log-linear
tax function in levels improves the fit at the top, with estimated progressivity falling
to τ = 0.09, but it deteriorates the fit at the bottom. Adding an intercept allows to
match both taxes paid at the top and transfers received at the bottom. The estimated
parameters are τ = 0.06 and T = $4,500.

2.6 Taking stock

There are two main takeaways from this section. First, adding a transfer to the log-linear
tax function results in a substantial increase in welfare, which comes consistently close
to the Mirrlees plan. This is because a transfer allows to implement more progressive
average than marginal rates. Second, adding a transfer also significantly improves the
empirical fit of the log-linear tax function on U.S. data.

While calibrated, the model of this section is too simple to make a truly quantitative
statement about the optimal combination of the instruments. Furthermore, a lump-sum
transfer is a limited description of currently available instruments. To address these
points, we move next to a dynamic quantitative macro model of the U.S. economy with
more flexible fiscal instruments.
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3 A quantitative model

We extend our previous discussion by analyzing the optimal design of taxes and transfers
in a rich dynamic quantitative environment with endogenous self-insurance. In partic-
ular, we incorporate a flexible t&T system into a canonical heterogeneous-agent model
(Aiyagari 1994) augmented with realistic labor income risk. We describe the model envi-
ronment and its calibration in this section, including the empirical fit of our flexible tax
function on U.S. household-level data. Section 4 discusses the optimal tax plan and the
role of transfers.

3.1 Environment

The economy is populated by a continuum of households, a representative firm, and a
government. The firm produces output by combining labor and capital, both of which
are supplied by households. The government finances transfers and spending by taxing
households’ labor and capital incomes as well as consumption. We present the economy
at its stationary equilibrium but will consider transitions when evaluating tax reforms.

Households.—Households value consumption c and leisure 1− n. Their idiosyncratic
labor productivity z follows a Markov process with transition probabilities πz(z

′, z). La-
bor productivity shocks are uninsurable: households can only trade a one-period risk-free
bond to self-insure, subject to a borrowing limit. Let V (a, z) be the maximal attainable
value to a household with assets a and idiosyncratic productivity z:

V (a, z) =max
c,a′,n

{
c1−σ

1− σ
−B

n1+φ

1 + φ
+ βEz′ [V (a′, z′) |z]

}
s.t.

(1 + τc)c+ a′ ≤ wzn+ (1 + r)a− T (wzn, ra)

a′ ≥ a,

(10)

where w and r stand for wages and the interest rate, respectively; a denotes the borrowing
constraint; and τc is a flat consumption tax. Households’ income taxes and transfers
are captured by T (wzn, ra), which depend on labor income wzn and capital earnings
ra. We discuss the shape of T (·) in detail below. Let n(a, z), c(a, z) and a′(a, z) denote
a household’s optimal policies.

Representative firm.—The representative firm demands labor and capital in order to
maximize current profits

Π = max
K,L

{
K1−αLα − wL− (r + δ)K

}
, (11)

where δ is the depreciation rate of capital. Optimality conditions for the firm are standard:
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marginal products are equalized to the cost of each factor.
Government.—The government’s budget constraint is given by

G+ (1 + r)D = D +

∫
T (wzn, ra)dµ(a, z) + τc

∫
c(a, z)dµ(a, z) (12)

where G is government spending, D is government debt, and µ(a, z) is the measure of
households with state (a, z) in the economy.

Stationary equilibrium.—Let A be the space for assets and Z the space for produc-
tivity. Define the state space S = A × Z, and let B be the Borel σ−algebra induced
by S. A formal definition of the competitive stationary equilibrium for this economy is
provided next.

A competitive stationary equilibrium for this economy is given by value func-
tion V (a, z) and policies {n(a, z), c(a, z), a′(a, z)} for the household; policies for the firm
{L,K}; government decisions {G,D, T , τc}; a measure µ over B; and prices {r, w} such
that, given prices and government decisions: (i) households’ policies solve their problems
and achieve value V (a, z), (ii) the firm’s policies solve its problem, (iii) the government’s
budget constraint is satisfied, (iv) the capital market clears: K +D =

∫
B a

′(a, z)dµ(a, z),
(v) the labor market clears: L =

∫
B zn(a, z)dµ(a, z), (vi) the goods market clears:

Y =
∫
B c(a, z)dµ(a, z) + δK +G, and (vii) the measure µ is consistent with households’

policies: µ(B) =
∫
B Q((a, z),B)dµ(a, z), where Q is a transition function between any two

periods defined by Q((a, z),B) = I{a′(a,z)∈B}
∑

z′∈B πz(z
′, z).

3.2 A flexible tax-and-transfer function

We endow the government with two fiscal tools capturing the key elements of the U.S.
t&T system: a nonlinear labor tax and targeted transfers. Conveniently, the overall t&T

system is characterized by a few parameters only, all of which have a clear economic
intuition. Yet the function allows for flexible—potentially non-monotonic—shapes of
the overall marginal t&T rates, a feature often found desirable in the optimal taxation
literature.

In particular, we divide the t&T function T (·) into three components: a flat tax τk

on capital income yk, a nonlinear tax τ(yℓ) on labor income yℓ, and a targeted transfer
component T (y) on total income y = yk+yℓ. From these components, we keep the capital
tax constant (and purposely simple) and focus attention on labor taxes and transfers.

We assume the average labor tax rate is characterized by two parameters, θ and λ, as

τ(yℓ) = exp

(
log(λ)

(
yℓ
ȳ

)−2θ
)
, (13)

where ȳ is mean income. As with the log-linear tax function used in Section 2, our
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Figure 4: Labor tax function and targeted transfers

Notes: The left panel illustrates the shape of the new labor tax function. It compares the average tax
rate in the calibration (λ = 0.25 and θ = 0.08) to a higher progressivity (θ = 0.12) and a higher level
(λ = 0.3). The right panel plots the new transfer function. It compares transfers normalized by mean
income in the calibration (m = 0.09 and ξ = 4.22) to a lower level (m = 0.05) and a slower phase-out
(ξ = 2). Income is normalized by mean income.

proposed tax function has two interpretable parameters: θ for the progressivity and λ for
its level. A positive (negative) θ implies marginal tax rates that increase (decrease) with
income. At θ = 0, the tax is flat at λ. For all θ, the tax rate is exactly λ when income
is at its mean, yℓ = ȳ. The left panel of Figure 4 shows how τ(yℓ) varies with θ and λ.

This labor tax function is always non-negative, in line with statutory tax rates in
the United States. Other than that, our function largely resembles the log-linear tax
used in Section 2, as shown in Figure C.1 of Appendix C.1. The level of progressivity
θ is approximately on the same scale as the progressivity τ of the log-linear tax. The
non-negative labor taxes imply that we rely exclusively on income-dependent transfers to
generate negative t&T rates, as we explain next.

We assume a transfer function that is characterized by two parameters: a level m and
a phase-out rate ξ. In particular, the transfer given to a household with total income y

is given as

T (y) = mȳ
2 exp

{
−ξ
(

y
ȳ

)}
1 + exp

{
−ξ
(

y
ȳ

)} . (14)

The parameter m measures transfers to a household with zero income as a multiple of
mean income ȳ. The parameter ξ determines how quickly transfers phase out with total
income. When ξ = 0, transfers are a lump sum. As ξ becomes larger, transfers phase
out faster. The right panel of Figure 4 shows how transfers vary with m and ξ.
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This functional form for transfers is a realistic description of U.S. income security
programs, where transfers are means-tested, typically on both labor and capital in-
come. Moreover, the phasing out of the transfer allows for non-monotonic marginal
rates of the entire t&T system, which is not possible with a lump-sum transfer.

Thus, a government’s policy is characterized by four parameters: the progressivity
and level of labor taxes, θ and λ, and the level and phase-out rate of transfers, m and
ξ. We refer to a fiscal plan τ = {θ, λ,m, ξ} as a government’s policy that satisfies its
budget constraint (12).

3.3 Estimation of the tax-and-transfer function

We estimate the tax and the transfer functions using CPS household-level data, inde-
pendently of other model parameters. Our measure of taxes includes personal federal
and state income taxes, as well as employer and employee payroll taxes, from which we
deduct the non-refunded part of federal and state tax credits. Our measure of trans-
fers includes refunded tax credits—that is, the (refunded) Additional Child Tax Credit
(ACTC) and the refunded part of the EITC and of state credits—as well as the SNAP,
Housing Assistance, and additional welfare transfers. Appendix B.1 contains details on
the construction of variables and robustness checks of the estimates, as well as the dis-
tribution of all components of transfers across households (Figure B.1).

Figure 5 plots estimated taxes and transfers in dollars against their data counter-
part. Income-tax progressivity is estimated at θ = 0.08, close to the estimate obtained
in Section 2.5 with a log-linear function and a lump sum. Transfers for a household at
minimum income are estimated at $7,100, with a phase-out of ξ = 4.22. Overall, our
flexible functions require only a small number of parameters and fit remarkably well the
distributions of taxes and transfers, making it particularly useful for applied/quantitative
work.12

3.4 Calibration

We calibrate the model to the U.S. economy in 2012. We take a period in the model to
be a year. Several parameters are calibrated within the model, while others are taken
from the literature, as we discuss next.

Labor income risk.—Recent empirical work has unveiled key statistics about labor
income dynamics, two of which are potentially important for our purposes. First, the
recent work in Guvenen, Karahan, Ozkan, and Song (2021) shows that earnings growth
rates are negatively skewed and exhibit excess kurtosis. That is, relative to a normal
distribution, there are more individuals with small and large earnings changes, but fewer

12We estimate labor taxes and transfers separately. Figure B.2 in Appendix B.1 shows that prediction
errors of the after-t&T income are systematically small across the income distribution.
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Figure 5: Estimated tax and transfer functions

Notes: The left panel plots taxes paid, while the right panel plots transfers received, by 2.5% bins of
pre-t&T income distribution.

with medium-sized earnings changes. Often, the large earnings changes are negative. Sec-
ond, labor income inequality has increased in recent decades. These facts are relevant to
the efficiency and redistribution tradeoffs we analyze in this paper. Thus, we propose a
process for idiosyncratic labor risk that can account for them.

In particular, we assume that a household’s productivity z follows a Gaussian Mixture
Autoregressive (GMAR) process in logs as

log zt = ρ log zt−1 + ηt

ηt ∼

N (µ1, σ
2
1) with probability p1,

N (µ2, σ
2
2) with probability 1− p1,

(15)

with E[η] = p1µ1 + (1− p1)µ2 = 0, so that µ2 is pinned down given µ1 and p1.
Most times, households draw an innovation from the first normal that has a low

variance. Draws from the second normal occur infrequently, but they have a large variance
and a negative mean. In this way, we can generate frequent small and infrequent large
negative earnings changes—that is, the negative skewness and excess kurtosis empirically
documented for labor income growth. We discretize the productivity process using the
method of Farmer and Toda (2017).

Furthermore, to better capture the concentration of incomes at the top, we follow
Hubmer, Krusell, and Smith (2020) and make one additional adjustment to the produc-
tivity process. We adjust the top 15% states in our productivity grid such that they
follow a Pareto distribution with tail κ = 1.6, as estimated by Aoki and Nirei (2017).
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The income process is then characterized by five parameters: (ρ, µ1, σ1, σ2, p1). We
pick these parameters to match key statistics of households’ labor earnings growth from
the Panel Study of Income Dynamics (2021) (PSID) as well as income concentration at
the top.13 We target four moments of the labor income growth distribution: the standard
deviation (0.33), the difference between the ninetieth and the tenth percentiles (0.60), the
skewness (-0.37), and the kurtosis (12.48). Additionally, we target a labor income share
of 41% for the top 10% of labor income earners, as found in the Survey of Consumer
Finances (SCF) for 2012.14

Government.—We use data from National Income and Product Accounts (NIPA) and
calibrate capital taxes to match capital tax revenues over GDP. Similarly, we calibrate
consumption taxes to match revenues from sales and excise taxes over total consumption
expenditure.15 This procedure yields τk = 29.8% and τc = 6.3%. We calibrate govern-
ment debt D to match a debt-to-output ratio of 99%, as in the Flow of Funds.16 The
parameters for labor taxes and targeted transfers, τ = {θ, λ,m, ξ}, are estimated using
cross-sectional data, as explained in Section 3.3. Finally, spending is implied by govern-
ment budget clearing. Overall, total tax revenues amount to 23.6% of GDP, a number
close to its data counterpart (NIPA). Tax revenues are split as follows: spending sums up
to 20.4% of GDP, transfers to 1.2% of GDP, and interest payments to 2.0% of GDP.17 Ta-
ble 3 reports the distribution of transfers and labor income-tax rates across households,
while Figure 6 plots average and marginal t&T rates as a function of labor income for
different values of capital income.

Remaining parameters.—We set the coefficient of relative risk aversion σ to 2, a
value that is more standard in quantitative macroeconomics than the log utility used for
tractability in Section 2. We fix the Frisch elasticity φ to 0.4, also a common value. We
set the production side parameters to standard values, with the labor share α = 0.64

and the (annual) depreciation rate δ = 0.06. The borrowing constraint is calibrated to
a quarter of mean income. We calibrate the discount factor β and labor disutility B to
jointly match an interest rate of 2% and an average labor supply of 0.3. All parame-
ters are summarized in Table 2. Section 5 presents robustness with respect to several
parameters.

Distributions.—The model matches well the income distribution, as Table 4 shows.
While the labor income share of the top 10% is targeted, the model features a remarkable

13We do not directly use the statistics reported in Guvenen, Karahan, Ozkan, and Song (2021), because
they are computed at the individual level. Instead, we follow De Nardi, Fella, and Paz-Pardo (2019)
and use PSID data to compute income growth statistics at the household level, but base estimates on
pre-tax income data. See Appendix B.3 for more details on the PSID. Table C.1 in Appendix C.3
reports income risk moments in the model.

14See Appendix B.2 for more details on the SCF.
15See Appendix B.4 for definitions of capital tax revenues and consumption taxes in the NIPA tables.
16See Appendix B.5 for more details on the Flow of Funds data.
17We find a comparable split using NIPA data. See Appendix B.4.
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Table 2: Parameter values

Household Income Process
β Discount factor 0.968 ρ Persistence 0.935
σ Risk aversion 2.000 p1 Weight on first normal 0.850
1/φ Labor supply elasticity 0.400 µ1 Mean of first normal 0.017
B Disutility of labor 85.00 µ2 Mean of second normal -0.096
a Borrowing constraint -0.220 σ1 Std. dev. of first normal 0.166

Production σ2 Std. dev. of second normal 0.535
δ Depreciation rate 0.060 κ Pareto tail parameter 1.600
α Labor share 0.640

Government
θ Tax progressivity 0.077 D Public debt 1.064
λ Tax level 0.247 G Government spending 0.218
m Transfer level 0.088 τk Capital tax rate 0.298
ξ Transfer phase-out 4.220 τc Consumption tax rate 0.063

Table 3: Calibration: Taxes and transfers

Tax rates Q1 Q2 Q3 Q4 Q5

Data 16% 19% 22% 24% 29%
Model 16% 18% 19% 20% 27%

Transfers rates Q1 Q2 Q3 Q4 Q5

Data 23% 4% 1% 0% 0%
Model 17% 4% 1% 0% 0%

Notes: Total labor income taxes paid and total transfers received over total income per quintile. Data:
CPS 2013, working-age households.

Table 4: Calibration: Income and wealth

Labor income Q1 Q2 Q3 Q4 Q5 Top 10

Data 4% 8% 13% 19% 56% 41%
Model 5% 9% 14% 20% 52% 38%

Net worth Q1 Q2 Q3 Q4 Q5 Top 10

Data -1% 1% 3% 10% 87% 75%
Model -0% 2% 7% 18% 73% 53%

Notes: Labor income shares by labor income quintiles and wealth shares by wealth quintiles. Data:
SCF 2013, working-age households.
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Figure 6: Calibration: Average and marginal tax-and-transfer rates

Notes: Average and marginal t&T rates in the calibrated steady state along the labor income distribu-
tion, normalized by mean income. As transfers phase out with respect to total income, we report two
cases: at zero capital income (legend color) and at mean capital income (lighter color).

fit for all income quintiles. Importantly, the model captures accurately how poor the
poor are: labor income at the first, fifth, and tenth percentiles amounts to 12%, 24%,
and 36% of median labor income, versus 10%, 21%, and 31% in the CPS. The lowest-
income household earns $5,600 in the model, in line with our data earnings threshold of
$5,000. As we show in Section 5.1, the left and right tails of the income distribution
shape the optimal plan. In contrast, the model falls short in generating enough wealth
concentration at the top, a common shortcoming of this type of model.

Finally, we investigate the dispersion of hours and consumption across households. The
variance of log hours at the household level amounts to 0.097 in the data, versus 0.063 in
the model. A part of the discrepancy may be explained by measurement error in reported
hours.18 Regarding consumption, the model generates a variance of log consumption of
0.252, a number well in line with typical estimates in the literature (Heathcote, Perri,
and Violante 2010, Attanasio and Pistaferri 2014, Heathcote and Tsujiyama 2021).

3.5 Wealth effects and elasticities

Wealth effects on labor supply are key to the optimal design of the t&T system. Jointly
with the Frisch elasticity, wealth effects determine the response of labor supply to a tax
change. Golosov, Graber, Mogstad, and Novgorodsky (2021) estimate these wealth effects
by combining U.S. taxpayers’ income data with data on lottery winnings, a plausibly

18Appendix B.1 presents more details on the construction of the measure of hours in the data, while
Appendix C.4 report more moments of the distribution of log hours.
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exogenous variation in wealth. We replicate their estimates in our model—that is, we
assume an unexpected windfall and compute labor income responses.

The model wealth effects are in line with the estimates in Golosov et al. (2021). We
report wealth effects for an average and a large win size, the latter being closer to the
magnitude of transfers we analyze in Section 4. The estimates represent the five-year av-
erage change in labor income for every $100 won, as reported in Golosov et al. (2021). For
the average win size, labor income declines $2.3 in the data and $2.4 in the model. For
the large win size, the declines are $0.9 in the data and $1.2 in the model.19

Finally, the model also generates a reasonable labor elasticity at the top. We conduct
a partial-equilibrium experiment in which marginal tax rates unexpectedly increase by 1%
for all households. We vary the persistence of the tax change, from a one-year temporary
tax reform to a permanent tax reform. The implied labor elasticity of the top 1% varies
from 0.12 to 0.34 in the model, a number well within the range of values reported in the
literature.20

4 Optimal tax-and-transfer plan

In this section, we show that the insights of the analytical model carry over to our quan-
titative environment: a planner optimally trades higher transfers for lower income-tax
progressivity. When including realistic efficiency and redistribution concerns, the optimal
fiscal plan features generous transfers and moderate labor-tax progressivity. Thus, as in
the analytical case, transfers are key to generate more progressive average than marginal
t&T rates. Furthermore, we show that while a phasing out of transfers is optimal, a
lump-sum transfer comes close in terms of welfare gains.

4.1 A Ramsey approach

A government’s plan is fully characterized by τ = {θ, λ,m, ξ}, the progressivity and level
of labor taxes, and the level and phase-out rate of transfers. We use a utilitarian welfare
criterion to evaluate a one-time change in policy τ , keeping capital and consumption taxes
constant at their calibrated values, and include transitions in the welfare computations.21

19See Appendix C.5 for more details.
20See Kindermann and Krueger (2022) for a discussion of the empirical literature and the model coun-

terpart in a related framework. In a recent paper, Rauh and Shyu (2022) use administrative microdata
from California to estimate income responses from a 2012 tax reform to state marginal income tax rates
for upper-income households. Their estimates—which are significantly larger than the rest of the liter-
ature (Chetty 2012) and thus larger than our model—may also reflect rent-seeking behaviors or fiscal
optimization, as the authors mention.

21We actually optimize on three parameters—θ, λ, and ξ—and set m to satisfy the budget con-
straint. Thus, m varies somewhat along the transition. We report the long-run value of m. See
Appendix C.2 for computational details. For optimal time-varying tax systems, see Acikgöz, Hagedorn,
Holter, and Wang (2022) and Dyrda and Pedroni (2022).
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In particular, let V0(a, z; τ ) be the lifetime utility of a household with assets a and
productivity z in the period when the policy τ is implemented. The utilitarian welfare
criterion W(τ ) considers the sum of utilities V0(·) as

W(τ ) =

∫
V0(a, z; τ )dµ0(a, z). (16)

Notice that policy τ affects household lifetime utility, but the measure µ0(a, z) is given
by the initial steady state of the economy.22

4.2 Optimal tax-and-transfer system

The optimal system is substantially more redistributive than the system currently in
place in the United States. Optimal transfers are large, at $19,800 in 2012 U.S. dollars
for the lowest-income household. This value implies an income floor of 23% of mean
income (m = 0.23). The optimal phase-out is slow—at ξ = 3.41, compared to ξ = 4.22

in the calibration—implying a transfer of $3,700 for a household at calibrated median
income. Optimal income-tax progressivity is moderate at θ = 0.14, only slightly higher
than in the status quo.

Optimal average t&T rates are more progressive than marginal rates, as Figure 7
shows. Average rates monotonically increase with income because of both transfers and
progressive labor taxes. Marginal rates, however, are not monotonic. They are high for
low-income earners because transfers phase out, lower for medium-income earners, and
high again for top-income earners because of progressive labor taxes.

Transfers in the optimal system are substantially more generous than in the status
quo. As shown in Table 5, the transfer rate is 85% for the bottom income quintile,
compared to only 23% in the data. Transfers also remain generous for the second and
third quintiles in the optimal plan, while they are virtually zero in the empirical coun-
terpart. The larger transfers are financed with higher labor taxes, with tax revenues
equal to 33% of GDP in the new steady state, but the optimal income-tax progressivity
increases only slightly, as compared to the status quo. Thus, tax rates increase almost
uniformly across quintiles. Table 5 also shows average and marginal t&T rates by income
quintile. Average t&T rates are more progressive than in the status quo: they are equal
to −66% for the bottom quintile and monotonically increase with income to reach 36%

for the top quintile. Marginal t&T rates are non-monotonic, at above 60% in the bottom
two quintiles and around 50% in the top two quintiles.

Overall, the optimal plan achieves redistribution via large transfers at the bottom. It
also preserves efficiency with moderate income-tax progressivity, thereby incentivizing
labor from productive households. This quantitative finding is in line with the ana-

22Appendix D.1 reports the optimal fiscal plan when optimizing on steady-state welfare.
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Figure 7: Optimal tax-and-transfer system: Average and marginal t&T rates

Notes: This figure shows optimal average and marginal t&T rates along the labor income distribution,
normalized by calibrated mean income. We report two cases: zero capital income (legend color) and
mean capital income (lighter color).

lytical model, where transfers are optimally used to disentangle average and marginal
progressivity.

4.3 The economy shrinks, but most people benefit

The optimal t&T system results in a decline in economic activity, as Figure 8 shows. The
higher taxes and more generous transfers lead to lower savings, and thus wages decline
while the interest rate increases. The distribution of hours worked in the final steady
state also shifts left, as Table 6 shows. Overall, output in the final steady state is 14%
lower than in the initial steady state, a drop that is magnified by the consideration of
transitions.23

Yet not only does the optimal t&T system increase utilitarian welfare, but it is also fa-
vored by a majority of households over the status quo. Aggregate welfare gains amount to
6.00% in consumption-equivalent terms.24 As Figure 9 shows, these large welfare gains ac-
crue primarily to the poor, who benefit the most from the generous transfers. Households
with high productivity experience welfare losses. On average, though those with higher
assets may still benefit from the tax reform because of the higher interest rates. Overall,

23When maximizing steady-state welfare, the planner ignores transition gains from price dynamics
and lower capital stock, as explained in Bakış, Kaymak, and Poschke (2015). Consequently, the optimal
system provides less redistribution, and output falls only by 5%. Appendix D.1 provides a complete
description of the fiscal system maximizing steady-state welfare.

24See Appendix D.2 for a formal derivation of consumption equivalents in our environment and for
more details on the welfare decomposition.
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Table 5: Optimal tax-and-transfer system

Data Q1 Q2 Q3 Q4 Q5

Tax rates 16% 19% 22% 24% 29%
Transfer rates 23% 4% 1% 0% 0%

Average t&T rates -7% 16% 21% 24% 29%

Optimal plan Q1 Q2 Q3 Q4 Q5

Tax rates 19% 23% 26% 26% 36%
Transfer rates 85% 24% 8% 2% 0%

Average t&T rates -66% -1% 19% 24% 36%
Marginal t&T rates 63% 61% 55% 48% 50%

UBI plan Q1 Q2 Q3 Q4 Q5

Tax rates 48% 46% 47% 41% 48%
Transfer rates 97% 49% 33% 22% 9%

Average t&T rates -48% -3% 15% 19% 40%
Marginal t&T rates 56% 58% 59% 59% 61%

Log-linear plan Q1 Q2 Q3 Q4 Q5

Average t&T rates -11% 8% 18% 25% 47%
Marginal t&T rates 23% 37% 45% 49% 62%

Notes: This table shows per-quintile tax and transfer rates: total labor-income taxes paid and total
transfers received over total income, by income quintile. It also reports the average t&T rates, that is,
the tax rate minus the transfer rate; and the marginal t&T rate, averaged by quintile. It reports the
CPS data, the optimal plan with targeted transfers, the UBI plan with lump-sum transfers, and the
log-linear plan without transfers.

76% of households benefit from implementing the optimal plan.
We follow Bhandari, Evans, Golosov, and Sargent (2022) and decompose the welfare

gains into three components: aggregate efficiency, redistribution, and insurance. Effi-
ciency captures the welfare gains resulting from changes in aggregate resources. Redis-
tribution captures changes in ex-ante shares of consumption and leisure, while insurance
captures changes in ex-post utility risk.

About three-fourths of the gains come from insurance, one-fifth from redistribution,
and the remainder from the efficiency component. The insurance gains reflect lower
volatility of consumption due to larger transfers. All households record a gain in the
insurance component, but this gain is larger for low-asset households. The redistribution
component is driven by lower dispersion in ex-ante consumption shares. This component
aggregates to a small number but masks substantial heterogeneity: it is large for low-
asset/low-productivity households, while it is negative for high-productivity but low-asset
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Figure 8: Quantitative model: Responses of prices and quantities to the tax reform

Notes: This figure plots the transition path for the interest rate, wages, capital, and output after the
tax reform is implemented. t = 0 shows the calibrated steady state. Responses of wages, output, and
capital are plotted in percentage deviation from steady state; the interest rate response is plotted in
differences.

households. Interestingly, the efficiency component is slightly positive, as the decrease
in aggregate consumption is offset by larger leisure (Table 6, top panel). Efficiency gains
also result from a better allocation of hours worked, with the distribution of hours tilted
toward more productive households (Table 6, bottom panel).

4.4 Exploring the phase-out of transfers: UBI and affine plans

A positive phase-out of transfers allows to implement non-monotonic marginal t&T rates,
which is a property featured in the optimal plan and is also reminiscent of the optimal

Table 6: Distribution of hours: Calibration and optimal t&T system

Mean hours Hours worked quintile

Calibration 0.20 0.28 0.32 0.35 0.38
Optimal 0.18 0.25 0.28 0.31 0.34

Log hours deviation Wage quintile

Calibration -0.03 0.00 -0.04 0.05 0.01
Optimal -0.18 -0.07 -0.01 0.12 0.13

Notes: The top panel shows average hours worked by quintile, sorting households by hours worked. The
bottom panel reports average log hours per quintile minus the mean of log hours, sorting households per
wages. Statistics are reported for the calibration and for the steady state of the optimal t&T system.
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Figure 9: Optimal tax-and-transfer system: Consumption equivalent welfare gains

Notes: This figure shows welfare gains, in terms of consumption equivalent (CE), from a tax reform
to the optimal system. The solid line plots the average CE by productivity level z, while the two thin
dotted lines show the bottom-20% and the top-80% of the distribution of CE at each z. Both axes are
cut for readability; welfare gains peak at 43% for the lowest-productivity level and converge to about
-2% for top levels of productivity. The dashed line plots the average CE under the optimal log-linear
plan. The right axis plots the measure of households for each productivity level.

U-shaped marginal rates often found in the public finance literature. To evaluate the
importance of non-monotonic marginal rates, we compute the optimal plan when transfers
do not phase out (ξ = 0). In this case, the shape of marginal t&T rates is monotonic
and determined by the labor tax progressivity.

Eliminating the transfer phase-out allows us to discuss two common tax proposals:
a UBI and an affine plan. The UBI plan eliminates the phase-out of transfers but still
optimizes the progressivity of labor taxes θ. The affine plan is a UBI plan financed with
flat income taxes—that is, θ = 0.

The UBI plan includes large transfers at m = 0.21, or about $18,700 for each house-
hold, which are optimally financed with almost flat labor taxes at θ = 0.04. Transfers in
the optimal UBI amount to a large government outlay representing 18% of GDP, com-
pared to 5% in the benchmark plan. In order to finance the transfers and preserve labor
supply incentives, income-tax progressivity falls so as to maintain roughly flat marginal
t&T rates. Labor taxes are thus higher than in the plan with a phase-out and almost con-
stant across households, spanning from 56% in the first income quintile to 61% in the top
income quintile. Although with different tax and transfer rates, the UBI plan achieves
a remarkably comparable level of redistribution as with a phase-out, with comparable
average t&T rates across households (see Table 5).

The optimal affine plan is similar to the UBI, as the latter uses almost flat taxes. The
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affine plan features a lump-sum transfer of $20,300 to each household and a tax rate of
60%.

The welfare gain of the UBI is 5.36% in consumption-equivalent terms, while the
affine gains are 5.26%, both close to the gains in the plan with a phase-out. Thus,
our framework is supportive of lump-sum transfers. However, while the phasing out of
transfers generates only modest additional welfare gains, it is associated with lower labor
tax rates, which may be easier to implement in practice.

Overall, the UBI and affine exercises point to the importance of the intercept, as
highlighted in the simple model. Transfers, even if lump sum, allow to separate the
progressivity of average and marginal tax rates. The phasing-out of transfers additionally
allows for non-monotonic marginal tax rates. Disentangling the progressivity of average
and marginal tax rates generates most of the welfare gains. Non-monotonic marginal
rates are less important for welfare.

Comparison to the optimal log-linear plan.—We compute the optimal plan using a
log-linear labor tax function, as in the analytical section.25 The optimal plan features
large progressivity, at τ = 0.26 when maximizing steady-state welfare and τ = 0.39

when including transitions, compared to the estimated τ = 0.18 for the current U.S.
system. Yet, compared to the optimal plan with targeted transfers, the optimal log-
linear plan achieves less redistribution and at the cost of strongly increasing marginal
t&T rates (see Table 5). Welfare gains are large, at +2.88%, but smaller than with
targeted transfers, in particular for households at the bottom of the income distribution
(see Figure 9). Interestingly, the most productive households are also worse-off under
the log-linear plan, because of the higher tax rates.

Optimal UBI with fixed income-tax progressivity.—To compare our results with those
of Guner, Kaygusuz, and Ventura (2021), we compute the lump-sum transfer that opti-
mizes steady-state welfare when fixing income-tax progressivity to its status quo level. We
find an optimal transfer of $10,700, a number close to the optimal transfer of $10,400 for
a couple with two children reported in Guner, Kaygusuz, and Ventura (2021). Account-
ing for transitions and optimizing on income-tax progressivity both increase the optimal
transfer.

5 Main quantitative determinants of the optimal plan

This section quantitatively investigates the main determinants of the optimal t&T plan.
We first explore the effects of changing the tails of the income distribution as well as
changing the distribution of income risk. We also report alternative calibrations of public
spending and preferences. To ease comparison across environments, we focus on plans

25See Appendix D.3 for more details.
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with no phase-out (ξ = 0).26

5.1 Income distribution: A story of two tails

A key insight of the analytical model is the optimal negative relation between transfers
and progressivity. This relation remains valid in the quantitative model: for a given phase
out ξ, larger transfers m are optimally associated with lower income-tax progressivity
θ. We refer to this relation as the transfer-progressivity locus. To shed light on the role
of the income distribution, we explore how this locus shifts with the left and right tails
of the income distribution.

We compute the transfer-progressivity locus in our benchmark and in another two
economies: a “No Pareto” economy and a “Richer Poor” economy. For the “No Pareto”
economy, we remove the Pareto tail adjustment to the highest values of the productivity
grid. For the “Richer Poor” we increase the lowest 20% of the productivity distribution to
equate its 20th percentile. In both cases, we readjust all remaining parameters to match
the same calibration targets as in our benchmark, except for the income distribution. The
left panel of Figure 10 shows the optimal transfer-progressivity locus for the benchmark
and the two additional cases. The x-axis plots transfers in dollars, which are pinned down
by m. The y-axis plots the difference between the marginal rates of the top 10% and of
the entire distribution, a measure that closely correlates with the income-tax progressivity
parameter θ. The right panel of Figure 10 reports the productivity distribution for the
benchmark and the two alternative economies. Table 7 reports more statistics on the
optimal plans.

In the “No Pareto” economy, the transfer-progressivity locus shifts down. That is, for a
given level of transfer, the optimal progressivity falls significantly, reducing the difference
in marginal rates at the top by about 13 percentage points. This finding confirms the
results in Mankiw, Weinzierl, and Yagan (2009) and Heathcote and Tsujiyama (2021),
which emphasize the importance of the right tail of the income distribution in determining
the optimal slope of the marginal rates at the top. Remarkably, while the optimal plan
features regressive income taxes—as in the simple model of Section 2—the optimal level
of transfers is almost the same as in the benchmark economy. Thus, the concentration
of income at the top does not significantly affect the size of optimal transfers, but it does
change the optimal way of financing them. With the Pareto tail, a planner is able to raise
sufficient revenues from the top and prefers lower tax rates on middle-income households.

In contrast, the transfer-progressivity locus barely shifts in the “Richer Poor” econ-
omy. That is, for a given level of transfer, the optimal level of progressivity is similar to
the benchmark. However, optimal transfers decrease by about $8,000, thus implying a
larger optimal income-tax progressivity.

26Table D.2 in Appendix D.4 reports optimal plans with a positive phase-out.
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Figure 10: Optimal transfer-progressivity locus and the income distribution

Notes: The left panel plots, for each level of transfer, the optimal income-tax progressivity—proxied
by the difference between the marginal rates of the top 10% and of the entire distribution. Diamonds
depict the optimal transfer-progressivity pair on each transfer-progressivity locus. Results are reported
for three economies: the benchmark, the “No Pareto”, and the “Richer Poor” economies. The phase-out
parameter ξ is fixed to zero. The right panel shows the average productivity level z by decile in each
economy.

5.2 Income risk

The distribution of income risk only moderately affects the optimal fiscal plan. Table 7
reports the optimal plan when labor productivity follows an AR(1) process, abstracting
from the Pareto tail for simplicity. We report two cases. First, we keep the persistence
of the AR(1) fixed to the calibrated value and set its innovation variance to match the
same overall productivity variance as in the GMAR case. We label this case as “No
Pareto Normal” and compare it to the “No Pareto” economy, which features the GMAR
process described in equation (15). Next, we increase the persistence from ρ = 0.935 to
ρ = 0.95 and decrease the standard deviation of the innovation from 0.261 to 0.229 to
keep the overall unconditional variance of productivity unchanged. We label this case as
“No Pareto Persistent”.

As compared to the GMAR, the AR process with same persistence has fewer large
negative shocks but more frequent medium-sized shocks. These differences have offsetting
effects on optimal taxes: while the less frequent left tail shocks reduce the need for
insurance, the more frequent medium-sized shocks do the opposite. This offsetting results
in a similar progressivity and somewhat larger transfers—from $19,200 in the “No Pareto”
case to $19,800 in the “No Pareto Normal” case.27 Remarkably, the optimal plan is

27This result is consistent with De Nardi, Fella, and Paz-Pardo (2019), which finds that the welfare
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Table 7: Optimal t&T plans under alternative calibrations

[1] [2] [3] [4] [5]
Transfers ∆ Margi- Average CE Fraction

nal rate rate with CE>0

Income distribution

Benchmark $18,700 4% 56% 5.36% 77%
No Pareto $19,200 -9% 62% 3.12% 71%
Richer Poor $10,700 12% 37% 2.32% 80%

Income risk

No Pareto Normal $19,800 -9% 64% 3.74% 73%
No Pareto Persistent $20,700 -10% 66% 4.71% 72%

Fiscal Space

Low Spending $21,100 4% 55% 7.58% 81%

Preferences

Low σ & φ $13,900 6% 45% 2.11% 68%

Notes: This table presents statistics of the optimal t&T plan with no phase-out for the benchmark
economy and 7 alternative calibrations. Column [1] reports the transfer in dollars; [2] the difference
between the marginal labor income tax rates of the top 10% and of the entire distribution; [3] the
average labor income tax rate, averaged over the entire distribution; [4] the welfare gain in consumption
equivalent terms; and [5] the fraction of the population supporting the reform.

largely unchanged with more persistent income shocks, once the variance of the process
is recalibrated. Optimal transfers increase mildly in the “No Pareto Persistent” case, at
$20,700. Overall, the distribution of income risk does not drastically change the optimal
t&T plan.

5.3 Fiscal space

The optimal plan is sensitive to the level of spending G. Table 7 reports the optimal
plan in an alternative “Low Spending” calibration. In the initial steady state, we decrease
λ, the level parameter of labor income taxes, to target a spending-over-output ratio of
16%—that is, 4 percentage points lower than in the benchmark calibration. We then
recalibrate the remaining parameters to match the same calibration targets as in the
benchmark.

As expected, with more fiscal space, optimal transfers increase, from $18,700 to
$21,100. Welfare gains are also larger. These results are consistent with the findings
in Heathcote and Tsujiyama (2021).

cost of idiosyncratic risk is somewhat lower when modeling higher-order moments of income risk.
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5.4 Preferences

The optimal plan is sensitive to preference parameters. Table 7 reports the optimal plan
in an alternative calibration with lower risk aversion and higher Frisch elasticity, which
we label as “Low σ & φ”. We set the risk aversion to σ = 1.5 and find the Frisch elasticity
φ−1 = 0.5 such that wealth effects remain unchanged. We then readjust all remaining
parameters, including the income distribution, to match the same calibration targets as
in the benchmark.

With lower risk aversion and higher Frisch elasticity, optimal transfers decrease to
$13,900. This result is intuitive: with higher Frisch elasticities, the distortionary cost of
labor taxes increases, while, with lower risk aversion, the insurance/redistribution gains
of transfers decrease. The welfare gains of the optimal plan are also scaled down, to
2.11%. Still, a large majority of households would support the reform (68%).

To summarize, the comparative statics of this section provide three takeaways. First,
the left tail of the income distribution determines optimal transfers, whereas the right
tail determines optimal income-tax progressivity. Second, the distribution of income risk
does not drastically change the optimal t&T plan. Third, the optimal plan provides less
redistribution/insurance with higher Frisch elasticity or lower risk aversion. Yet in all
cases, optimal transfers are larger than currently in the U.S., welfare gains of a tax reform
are sizable, and a vast majority of households would support it.

6 Conclusion

In this paper, we studied the optimal design of the tax-and-transfer system. We devel-
oped a tractable analytical model demonstrating an optimally negative relation between
transfers and income-tax progressivity, and showed that adding a transfer to a log-linear
tax induces welfare gains almost as large as in the second-best allocation. We then
quantified the optimal fiscal plan in a rich dynamic model calibrated to the U.S. econ-
omy. We found that optimal transfers should be generous, with a slow phase-out, and
financed with moderate income-tax progressivity. That is, the optimal plan features more
progressive average than marginal t&T rates. Furthermore, there are large welfare gains
from implementing this plan, which would be supported by a majority of households.

Our Ramsey approach is suitable for a quantitative and dynamic evaluation of effi-
ciency and redistribution concerns. The instruments we used are simple and intuitive,
and they resemble current policies implemented by many countries. Yet they are richer
than what is typically used in the Ramsey literature, and flexible enough to generate
nonlinear non-monotonic t&T schedules. As such, our analysis contributes to bridging
the gap between Mirrlees and Ramsey traditions.
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A Analytical model

A.1 Optimal plan without transfers

This section presents the derivation of the welfare formula when the government uses a log-linear
income tax and no lump-sum transfer.

Household problem.—Define αi ≡ log zi, with αi ∼ N (−vω/2, vω) so that E[zi] = 1. The
consumers solve a static problem: they maximize utility (1) given the budget constraint (2),
with T = 0. The first-order conditions deliver (5).

Computing λ.—Output is given by Y =
∫
yidi =

∫
exp (αi)nidi = n0. To compute λ, we also

need to compute Ỹ ≡
∫
y1−τ
i di =

∫
[n0 exp(αi)]

1−τ di = n1−τ
0 exp

(
−τ(1− τ)vω2

)
. Therefore,

using the government’s budget constraint (3), we can express λ as

λ =
Y −G

Ỹ
=

n0 −G

n1−τ
0

exp
(
τ(1− τ)

vω
2

)
≡ λ0. (17)

Welfare.—To compute welfare in closed form, we plug the equilibrium values of consumption
and hours worked into the utility function and integrate over the distribution of households, we
obtain

W (τ) =

∫
uidi = log λ+

1− τ

1 + φ
log

(
1− τ

B

)
− (1− τ)

vω
2

− 1− τ

1 + φ
,

and, using the closed-form solution (17) for λ, we obtain equation (6) in the main text.

A.2 Optimal plan with transfers

This section presents the case where the government is endowed with a log-linear income tax
and a lump-sum transfer.

A.2.1 Representative agent

We first abstract from heterogeneity and assume vω = 0. We show that: (1) for any level
of transfer there exists a progressivity that implements the efficient allocation; and (2) this
progressivity is decreasing in the transfer.

First-best.—Let n⋆(G) denote the first-best allocation, which maximizes the utility of the
representative agent given the resource constraint (4). It is characterized by

B (n⋆(G))φ (n⋆(G)−G) = 1. (18)

Second-best.—We turn to the optimal allocation when spending is financed with a log-linear
income tax and a transfer. The household chooses {c, n} to maximize utility (1) given the
budget constraint (2). The household first-order condition is

Bnφ =
λ (1− τ)n−τ

λn1−τ + T
.
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Efficient second-best.—Rearranging and using the government’s budget constraint (3), it
follows that for any level of transfer, the efficient allocation n⋆(G), characterized by (18), can
be implemented with progressivity τ⋆(G,T ) equal to

τ⋆(G,T ) = − G+ T

n⋆(G)− (G+ T )
. (19)

Furthermore, (19) implies that the optimal progressivity τ decreases with transfers T .
To understand why the first-best allocation can be implemented for any level of transfers,

we first focus on the case when T = 0. The labor policy function, characterized in (5), shows a
one-to-one negative relationship between n and τ , which ensures that a planner can always pick
the progressivity τ to implement n⋆(G). When transfers are not zero, the policy function for
labor does not admit a closed-form solution. However, labor supply decreases with transfers T

because of a wealth effect. This property explains the optimal negative relationship between τ

and T obtained in (19). Progressivity falls as transfers increase, such that labor supply remains
at n⋆(G) despite the more generous transfers.28 At the optimal labor level, for any T , the
marginal rate is zero.

Comparison with the “fiscal pressure” effect.—Note that the effect of transfers on progressivity
is qualitatively different from the one of spending. Larger spending increases the first-best
labor supply, but only taxes directly impact the household labor policy. With higher spending,
optimal progressivity decreases so that labor supply reaches its new first-best level. Transfers, by
contrast, do not alter the first-best labor supply but weaken the household’s incentives to provide
labor. With higher transfers, optimal progressivity decreases so that labor supply remains at
its unchanged first-best level.

Figure A.1 presents a numerical illustration of the relationship between transfers and pro-
gressivity for the representative agent case. As can be seen, optimal progressivity τ declines as
transfers T increase. We also plot the optimal relation between τ and T for higher spending: a
larger G generates a new curve, associated with a new level of labor, while a larger T moves the
optimum on the existing curve.

A.2.2 Heterogeneity

We now derive welfare as a function of progressivity τ and the transfer T when vω > 0. The
logic of the derivation is the same as with no transfers. However, we cannot express the policy
function for labor in closed form, so we linearize around T = 0.

Household problem.—The first-order condition of the household problem reads

Bn1+φ
i +

T

λ
Bnφ+τ

i exp(−(1− τ)αi)− (1− τ) = 0. (20)

Equation (20) defines the function F (T, λ, ni) s.t. F (T, λ, ni) = 0. At the optimum, the labor

28Equation (19) retrieves an old result in the Ramsey literature. When τ = 0, the optimal transfer is
T = −G. That is, the government finances all spending with a lump-sum tax and sets the distortionary
flat tax rate at zero.
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Figure A.1: Representative agent: implementing the first-best allocation

Notes: This figure shows the combinations of lump-sum transfer T and income-tax progressivity τ that
implement the first-best allocation in the representative-agent case. The dashed line highlights the case
of zero transfer, in which progressivity is negative: τ = −0.26. The dotted line marks the scenario of
an affine tax system, τ = 0, in which a lump-sum tax finances all government spending: T = −G. The
dash-dotted line shows the optimal combinations of T and τ for larger spending, at Ĝ = 1.5G.

decision is such that, for a given T , F (T, λ, ni(T, λ)) = 0.

Linear approximation of labor policy.—At T = 0 ≡ T0, ni(T0, .) = n0. The implicit function
theorem applies, and we can compute the slope of ni in the neighborhood of T0 as

∂ni(T, λ)

∂T

∣∣∣∣
(T0,n0,λ0)

= −

∂F (T,λ,ni)
∂T

∣∣∣
(T0,n0,λ0)

∂F (T,λ,ni)
∂ni

∣∣∣
(T0,n0,λ0)

.

Let η ≡ exp [(1− τ) vω], where we omit the dependence of η on τ and vω to ease notation. We
compute the two partial derivatives and obtain a linear approximation around (T0, n0, λ0) of
ni(T ) denoted n̂i(T ):

n̂i(T ) = n0 + T
∂ni(T )

∂T

∣∣∣∣
(T0,n0,λ0)

= n0 −
T

1 + φ

n0

n0 −G

η−
τ
2

exp[(1− τ)αi]
, (21)

which delivers equation (7).
Computing λ.—Again, we need to compute Y and Ỹ , which we linearize as Ŷ and ˆ̃Y . We

start with output:

Ŷ =

∫
yidi =

∫
exp (αi)nidi = n0 −

T

1 + φ

n0

n0 −G
η−τ . (22)
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To obtain Ỹ , we first approximate n̂1−τ
i . Using equation (21) and linearizing, we get

n̂1−τ
i (T ) =

[
n0 −

T

1 + φ

n0

n0 −G

η−
τ
2

exp[(1− τ)αi]

]1−τ

= n1−τ
0 − T

1 + φ

n1−τ
0

n0 −G

η−
τ
2 (1− τ)

exp[(1− τ)αi]
.

It follows that

ˆ̃Y =

∫ [
n1−τ
0 − T

1 + φ

n1−τ
0

n0 −G

η−
τ
2 (1− τ)

exp[(1− τ)αi]

]
exp [(1− τ)αi] di = n1−τ

0 η−
τ
2

[
1− T

1 + φ

1− τ

no −G

]
.

Using these expressions, we can compute λ using the government budget constraint (3), and
obtain, taking derivatives and linearizing around T = 0,

λ̂(T ) = λ0 +
T

1 + φ

1

η−
τ
2n1−τ

0

[
− n0

n0 −G
η−τ − (φ+ τ)

]
. (23)

Welfare.—We approximate utility around T = 0. The utility of an agent is given by

ui = log
[
λ [exp (αi)ni]

1−τ + T
]
− B

1 + φ
n1+φ
i ,

which, using our expressions (23) for λ̂(T ) and (21) for n̂i(T ), can be approximated as

ûi = ui,0 + T

{
λ′(T ) exp [(1− τ)αi]n

1−τ
0 − λ0

1−τ
1+φ

n1−τ
0

n0−Gη
− τ

2 + 1

λ0 exp [(1− τ)αi]n
1−τ
0

+
B

1 + φ

n1+φ
0

n0 −G

η−
τ
2

exp[(1− τ)αi]

}

= ui,0 + T

{
1

1 + φ

1

n0 −G

[
− n0

n0 −G
η−τ − (φ+ τ)

]
− 1− τ

1 + φ

1

n0 −G

η−
τ
2

exp[(1− τ)αi]
. . .

+
1

n0 −G

η−
τ
2

exp[(1− τ)αi]
+

B

1 + φ

n1+φ
0

n0 −G

η−
τ
2

exp[(1− τ)αi]

}
.

Integrating this equation yields W (τ, T ) = W (τ, 0) + Ω̂(τ, vω)T , with Ω̂(τ, vω) defined as

Ω̂(τ, vω) ≡
1

1 + φ

1

n0 −G

[
− n0

n0 −G
+ 1− τ

]
+

1

1 + φ

n0

(n0 −G)2
[
−η−τ + 1

]
+

1

n0 −G

[
η1−τ − 1

]
,

(24)
where, again, we omit the dependence of n0 on τ and of η on τ and vω.

Welfare decomposition: efficiency.—The first term in equation (24), which equates Ωe(τ, 0)

as defined in (8.a), can be rearranged as

Ωe(τ, 0) = − 1

n0 −G

1

1 + φ

n0

n0 −G
+

1− τ

n0

1

1 + φ

n0

n0 −G
.

It is equal to the marginal utility of aggregate consumption with no transfer uc(C0) = 1/(n0 −G),

multiplied by ∂Ŷ ra(T )/∂T , where Ŷ ra(T ) is defined as the representative-agent version of
(22) (i.e. with η = 1), evaluated at T = 0; plus the marginal utility of aggregate leisure
−un(n0) = Bnφ

0 = (1 − τ)/n0, multiplied by ∂n̂ra(T )/∂T , where n̂ra(T ) is defined as the
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representative-agent version of (21), evaluated at T = 0.
Adding the second term in equation (24) and rearranging, we retrieve Ωe(τ, vω) in (8.b)

Ωe(τ, vω) = Ωe(τ, 0) +
1

n0 −G

[
− 1

1 + φ

n0

n0 −G
η−τ +

1

1 + φ

n0

n0 −G

]
,

where the additional parenthesis, which captures the heterogeneity of wealth effects on labor sup-
ply, is equal to the marginal utility of aggregate consumption uc(C0), multiplied by ∂Ŷ (T )/∂T

minus ∂Ŷ ra(T )/∂T . Approximating further using exp(x) ≈ 1 + x delivers

Ωe(τ, vω) = Ωe(τ, 0) +
τ(1− τ)

n0 −G

n0

n0 −G

vω
1 + φ

,

which shows that the additional term changes non-monotonically with τ . Transfers reduce labor
supply more in the presence of heterogeneity, as the larger wealth effect of the poor more than
offsets the smaller wealth effect of the rich. Higher progressivity reduces this dispersion of
wealth effects, bringing labor supply closer to the representative agent case. However, the effect
on output depends not only on labor supply but also on the distribution of z, which makes
the effect of τ non-monotonic. In our calibrations, this second term is typically small, and
∂[Ωe(τ, vω)]/∂τ < 0 holds quantitatively, so that the total efficiency gains of transfers decrease
with progressivity.

Welfare decomposition: redistribution.—The third term in equation (24) can be rewritten as

Ωr(τ, vω) =
1

n0 −G
η1−τ − 1

n0 −G

and is equal to the average marginal utility across households,
∫
uc(λ0 (zin0)

1−τ )di, minus
marginal utility of aggregate consumption uc(C0). Approximating further using exp(x) ≈ 1+x

delivers equation (8.c).

Derivatives.—Claim 1 states that Ωe(τ, 0) is decreasing in τ . To show that, we sign the
derivative equal to

1

1 + φ

1

n0 −G

(
n0

n0 −G

1

1 + φ

[
−n0 +G

n0 −G

1

1− τ
+ 1

]
− 1

)
.

When τ > 0, 1
1−τ > 1 and n+G

n−G ≥ 1 such that − 1
1−τ

n+G
n−G + 1 < 0 and the derivative is always

negative. More generally, we need to show that the parenthesis is negative. As φ > 0, it is
sufficient to show that

n0

n0 −G

[
−n0 +G

n0 −G

1

1− τ
+ 1

]
≤ 1

is always true. This condition can be rewritten as

−(1− τ)G2 ≤ n0(n0 + τG). (25)

Equation (25) always holds as the left-hand side is negative ∀τ , while the right-hand side is
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positive as τ ≥ −1 and G ≤ n0 by feasibility.
Claim 2 states that Ωr(τ, vω) is decreasing in τ . The derivative reads

(1− τ)vω
1

n0(τ)−G

(
−2 +

1

1 + φ

n0(τ)

n0(τ)−G

)
, (26)

which is negative ∀τ ∈ [−1; 1] when G = 0. When G > 0, equation (26) is negative on

τ ∈ [−1, τ̂(G)], with τ̂(G) ≡ 1−BG1+φ
(

2(1+φ)
2(1+φ)−1

)1+φ
, which is above 0.99 in our calibration.

A.3 Mirrlees allocation

This section briefly presents the Mirrlees problem.29

Household.—The utility of a household with productivity z and facing a tax schedule Ξ(.)

can be written as

v(z,Ξ(.)) ≡ max
c,n

log c−B
n1+φ

1 + φ
s.t. c = zn− Ξ(zn).

Let ν(z,Ξ(.)) denote the labor policy.
Government.—The government chooses the taxation schedule Ξ(.) to maximize the sum of

utilities across households subject to its budget constraint:

max
Ξ(.)

∫
z
v(z,Ξ(.))dFz(z) s.t.

∫
z
Ξ(zν(z,Ξ(.)))dFz(z) ≥ G.

where Fz is the distribution of households’ productivity.
Note that the level of labor disutility B is irrelevant to the problem, as long as G is re-

calibrated so that G/Y remains constant. Indeed, the parameter B simply scales the entire
economy up and down and does not affect the efficiency-redistribution trade-off under homoth-
etic preferences.30

Heathcote and Tsujiyama (2021) presents a richer environment with individual productivity

29Alternatively, the Mirrlees problem can be written as a mechanism design problem. The utility of a
household with true productivity z and reported productivity z̃ is given by

U(z, z̃) ≡ log c(z̃)− B

1 + φ

(
y(z̃)

z

)1+φ

where c(z̃) and y(z̃) denote consumption and labor income. Given the productivity distribution denoted
Fz, the government chooses allocations {c(z), y(z)}z to maximize

∫
z
U(z, z)dFz(z) subject to the resource

constraint and a set of incentive constraints:∫
z

c(z)dFz(z) +G =

∫
y(z)dFz(z), and U(z, z) ≥ U(z, z̃) ∀(z, z̃).

See Heathcote and Tsujiyama (2021) for more details.
30Consider an alternative labor disutility parameter B̂, and a productivity process rescaled by ξ ≡

(B̂/B)1/(1+φ). Then

log c(z̃)− B̂

1 + φ

(
y(z̃)

ξz

)1+φ

= log c(z̃)− B

1 + φ

(
y(z̃)

z

)1+φ

.
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shocks which are insurable within families, in addition to the standard non-insurable shocks
common to all individuals in a family. As income is taxed at the family level, insurable shocks
only map to a different labor disutility parameter B of the family/household (see equation (9)
of their paper). Thus, our setup is equivalent to theirs, and we retrieve their welfare numbers
when using their calibration for non-insurable shocks (see Table 1), despite the fact that our
model does not feature insurable shocks.

B Data

B.1 Current Population Survey

We use the CPS to measure taxes and transfers as well as hours worked. The main data source
is the CPS Annual Social and Economic Supplement (ASEC) for 2013. We start from the CPS
version provided by IPUMS (Flood et al. 2021). Tax variables are imputed using the Census
Bureau’s CPS ASEC Tax Model (Lin 2022). Transfers are reported by households, but they
are severely underreported. We follow CBO procedure (Habib 2018), and impute transfers
when possible.31 Table B.1 contains a list of all tax-and-transfer variables that we use in the
benchmark analysis and in various robustness checks.

Table B.2 compares the aggregate amounts of transfer and tax credit variables in the CPS
to their counterparts from national accounts. The aggregate data is from the IRS Statistics of
Income for tax credits, from NIPA (Table 3.12) for SNAP, SSI, and Medicaid, and the Con-
gressional Research Service for housing assistance (public housing and rental assistance).32 We
do not report a data counterpart for welfare, as this measure contains a number of small pro-
grams. The fit is generally good; tax credits are underestimated, which is a common problem
when using survey data only to impute credits because of the difficulty of identifying qualifying
dependents (Lin 2022; Meyer et al. 2020).

B.1.1 Benchmark tax-and-transfer estimates

We first define measures of income, taxes, and transfers. All variables are aggregated at the
household level.

Our benchmark measure of labor income includes wage and salary income (incwage), non-
farm business income (incbus), farm income (incfarm), unemployment benefits (incunemp), and

31The Stata codes implementing the CBO imputation procedure are provided at https://github.com/
US-CBO/means_tested_transfer_imputations, which we last downloaded on December 8, 2022. The
merge between CPS and CBO imputed data requires original CPS identifiers, which are not included in
IPUMS. We merge the original identifiers to the IPUMS version of the CPS and use those to combine it
with the CBO imputation. This sequential merge procedure is described here: https://blog.popdata.
org/mergecpsfile/. We obtain the original CPS data from the Census at https://www.census.gov/
data/datasets/time-series/demo/cps/cps-asec.2013.html, last downloaded on December 8, 2022.

32For the housing assistance measure we use the CBO imputation procedure. As housing assistance,
the CBO includes public housing and rental assistance; see https://www.cbo.gov/system/files/2021-
09/57460-Transfers.pdf. We obtain an estimate for the sum of these two components from the Con-
gressional Research Service; see https://crsreports.congress.gov/product/pdf/RL/RL34591.
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Table B.1: Tax-and-transfer variables

Variable name Interpretation Source

fedtax Federal income tax before credits IPUMS CPS
fedtaxac Federal income tax after credits IPUMS CPS
ctccrd Child tax credit (CTC) IPUMS CPS
actccrd Additional child tax credit (ACTC) IPUMS CPS
eitcred Earned income tax credit (EITC) IPUMS CPS
fica Payroll taxes IPUMS CPS
fedretir Federal retirement payroll deduction IPUMS CPS
statetax State income tax before credits IPUMS CPS
stataxac State income tax after credits IPUMS CPS
snap_impute_val SNAP (food stamps) CBO imputed
ssi_impute_val Supplemental security income (SSI) CBO imputed
housing_assist_impute_val Housing assistance CBO imputed
mcaid_impute_val Medicaid CBO imputed
incwelfr Various public assistance programs IPUMS CPS

Notes: This table summarizes the tax-and-transfer variables used for benchmark estimates and ro-
bustness analysis. As federal income tax before credits includes non-refundable credits, the CTC is
accounted for in fedtax. The difference between federal income tax before and after credits corresponds
to refundable tax credits, that is, the EITC and the ACTC.

Table B.2: Transfer programs: comparison with national accounts

Program Aggregate data CPS

SNAP 74.9 75.2
Housing Assistance 37.3 36.0
Welfare - 5.6
SSI 53.1 52.1
Medicaid 417.5 310.0
EITC 65.4 45.0
CTC 27.9 30.5
ACTC 28.1 15.7

Notes: This table compares transfer program aggregates from the CPS to national accounts, in billions
of dollars.
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Figure B.1: Components of transfers

Notes: Components of transfers by 2.5% bins of pre-t&T income distribution.

worker’s compensation (incwkom). Total income consists of labor income plus interest income
(incint), dividend income (incdivid), rental income (incrent), educational assistance (inceduc),
other income (incother), and averages to ȳ = $90,185. Labor taxes include federal and state in-
come taxes net of non-refunded income tax credits, as well as employee and (imputed) employer
payroll taxes and federal retirement payroll deductions.33 As we account for dividend taxes in
our measure of capital taxes, we reduce taxes paid by 13.3% times dividend income.34 Transfers
include SNAP, housing assistance, welfare, and refunded federal and state income tax cred-
its. Sample selection is as follows: (1) the head of household is between 25 and 60; (2) house-
hold total and labor pre-tax incomes are above $5,000; (3) after tax-and-transfer total income
is positive; (4) before-credit labor taxes are lower than labor income.

Figure B.1 reports the different programs along the income distribution. The larger transfers
are SNAP and federal tax credits. The latter also phase out relatively slowly: they are larger
at the bottom but remain significant also higher up in the income distribution.35

Estimates.—Table B.3 reports parameter estimates of tax-and-transfer functions. The first
row presents our benchmark estimate, where we use a nonlinear estimate for the tax and the
transfer functions separately. The second row estimates the parameters jointly, using only pre-
tax and after-tax-and-transfer total income. The third row estimates the log-linear function,

33We also add imputed employer payroll taxes to labor income. We make a conservative estimate for
the employer part of payroll taxes by applying rates and contribution limits to wage and salary income,
but adjusting downwards if the Census imputed employee payroll tax is lower, adjusted for differences
in rates.

34See Section B.4 for more details on estimates of the dividend tax.
35It may be surprising that there is any receipt of SNAP in the middle of the income distribution, as

those income levels exceed the eligibility thresholds. As explained in Habib (2018), the CBO imputation
procedure uses self-reported recipiency status from the CPS, where some high-income households do
report receiving SNAP transfers. It may happen because SNAP eligibility is based on monthly income;
some individuals can also qualify for SNAP even if they live in a high-income household, as the definition
of a household in the CPS does not coincide with what is considered to determine benefit eligibility.
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Table B.3: Optimal t&T plans with phasing-out under alternative calibrations

Parameters Deviations

New functions λ θ m ξ In levels In logs

Benchmark 0.25 0.08 0.09 4.22 7543 0.158
Joint estimates 0.26 0.07 0.07 1.56 7510 0.156

Log-linear taxes 1− λ τ T

In log 0.22 0.18 - 12677 0.165
In levels 0.22 0.09 - 7641 0.184
With a transfer 0.27 0.06 4492 7450 0.156

Notes: This table summarizes estimates of different tax-and-transfer functions.

using OLS in logs. The fourth row estimates the log-linear function in levels, whereas the last
row estimates the log-linear function plus a lump-sum component, in levels as well. To measure
the fit to the after-tax-and-transfer income, the last two columns report the square root of the
mean squared deviation, in levels and in logs. Figure B.2 reports differences in actual minus
predicted t&T paid, in levels and relative to pre-t&T income.

B.1.2 Tax-and-transfer measures: robustness

Table B.4 presents tax-and-transfer rates under alternative variables for income, taxes, and
transfers, as well as the corresponding estimates of the tax functions.

First, we check robustness of our estimates with respect to the treatment of tax credits. Our
benchmark measure considers refunded tax credits as transfers, while non-refunded tax credits
are included in taxes. We consider two alternatives. First, we treat as transfers all refundable
tax credits reported in the CPS—that is, the EITC and the ACTC—even if they are not actually
refunded to households with high enough tax liabilities.36 Second, we treat as transfers all credits
reported in the CPS—that is, refundable credits plus the CTC. Most refundable credits are
actually refunded: the ACTC is fully refunded by definition and the vast majority of the EITC
is refunded as well. Thus, considering refunded or refundable tax credits as transfers makes no
significant difference. Treating all tax credits as transfers slightly decreases the estimate of the
phasing-out parameter ξ, because the CTC is received by many middle-income households, but
overall our estimates are robust to the treatment of tax credits.

Next, we check robustness with respect to the treatment of unemployment insurance (UI). Our
benchmark measure considers UI as labor income, because we do not model unemployment
explicitly, and receiving unemployment benefits is contingent on prior work history and in-
come. Treating UI as transfers slightly increases transfer rates at the bottom of the income
distribution, and the estimated m moves up, from 0.09 in the benchmark to 0.10.

We also consider alternative definitions of income. First, our benchmark excludes income

36For state credits, the data does not allow to make that distinction. Also in the “refundable” case,
we use “refunded” state credits.
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Figure B.2: Estimated t&T system: prediction errors

Notes: Prediction errors in taxes paid minus transfers received, data minus prediction. Errors are
reported for three sets of estimates: (1) the log-linear income-tax function without a transfer, estimated
on log income; (2) the log-linear income-tax function with a transfer, estimated on income in levels;
and (3) the new tax and transfer functions. The left panel reports absolute errors in dollars, while the
right panel reports relative errors as a fraction of pre-t&T income, by 2.5% bins of pre-t&T income
distribution.

related to retirement, disability, and family support, all of which are related to choices and
risks which are not modeled. Our estimates are robust to a broader income definition, which
also includes: social security income (incss), retirement income (incretir), income from veteran’s
benefits (incvet), income from survivor’s benefits (incsurv), income from disability benefits (in-
cdisab), income from child support (incchild), income from alimony (incalim), and income from
assistance from friends and relatives not living in the same household (incasist). Second, our
benchmark allocates all of business income to labor income, because taxes on business income
cannot be isolated from other taxes in the CPS. Allocating only two thirds of business income
to labor income, as sometimes done in the literature, does not change our estimates.

Regarding taxes, we propose two robustness checks: on payroll and dividend taxes. First,
in the benchmark we impute the share of payroll taxes paid by employers, and add it to, both,
labor income and labor taxes. Ignoring the employer payroll tax decreases tax rates, by about
6% in the first quintile and about 3% in the top quintile. Accordingly, the estimate for the level
of taxes, λ, decreases from 0.25 to 0.20. Second, we deduct estimated dividend taxes from the
benchmark measure of taxes; not doing so leaves estimates unchanged.

The last robustness check applies to transfers. The benchmark measure for transfers excludes
Medicaid and SSI, as our model abstracts from the risks insured through these programs, health
and disability. Including these transfers increases significantly transfer rates, especially at the
bottom of the income distribution. Accordingly, the estimated m increases significantly, from
0.09 to 0.18.
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Table B.4: Tax-and-transfer rates: robustness

Income quintiles Fiscal estimates

Q1 Q2 Q3 Q4 Q5 λ θ m ξ

Benchmark
Transfer rates 23% 4% 1% 0% 0%
Tax rates 16% 19% 22% 24% 29%
Estimates 0.25 0.08 0.09 4.22

Refundable credits in transfers
Transfer rates 23% 4% 1% 0% 0%
Tax rates 16% 20% 22% 24% 29%
Estimates 0.25 0.08 0.09 4.17

All credits in transfers
Transfer rates 24% 5% 2% 1% 0%
Tax rates 16% 21% 23% 25% 30%
Estimates 0.25 0.07 0.07 2.88

UI in transfers rather than income
Transfer rates 26% 5% 1% 1% 0%
Tax rates 16% 20% 22% 24% 29%
Estimates 0.25 0.08 0.10 3.75

Broad income definition
Transfer rates 21% 3% 1% 0% 0%
Tax rates 15% 18% 21% 23% 29%
Estimates 0.25 0.08 0.09 4.35

Alternative business income allocation
Transfer rates 23% 4% 1% 0% 0%
Tax rates 16% 19% 22% 24% 29%
Estimates 0.25 0.08 0.09 4.28

No employer payroll tax imputation
Transfer rates 24% 4% 1% 0% 0%
Tax rates 10% 14% 16% 19% 26%
Estimates 0.20 0.10 0.09 4.27

No adjustment for dividend taxes
Transfer rates 23% 4% 1% 0% 0%
Tax rates 16% 19% 22% 24% 30%
Estimates 0.25 0.08 0.09 4.22

Medicaid and SSI in transfers
Transfer rates 50% 11% 3% 1% 0%
Tax rates 16% 19% 22% 24% 29%
Estimates 0.25 0.08 0.18 3.44

Notes: The table summarizes tax-and-transfer rates by income quintile for different definitions of taxes,
transfers, and income, as well as the corresponding estimates for the fiscal parameters.
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B.1.3 Hours

We measure hours dispersion using the same sample as for the tax function estimation. We
compute hours at the household level as weeks worked in the year (wkswork1) times usual
hours per week (uhrsworkly), summed up over household members. We then regress household
hours on: household type (head is single or head has married/unmarried partner living in the
household), number of household members in different age groups, age, college education, race,
and sex of the head. We only consider singles who work between 260 hours (Heathcote, Perri,
and Violante 2010) and 4160 hours (that is, 80 hours for 52 weeks), and couples where total
household hours are above 520 and each worker provides less than 4160 hours. We compute the
variance of the residuals as our measure of hours dispersion. We proceed in the same way for
wages (total labor income divided by total hours) and correlate the residuals.

B.2 Survey of Consumer Finances

We use the 2013 Survey of Consumer Finances (SCF) to compute income and wealth distribu-
tions. The SCF reports measures of wealth and oversamples the rich, offering a better description
of the right tail of the income distribution than the CPS. The unit of observation is a family,
defined as the economically dominant single person or couple (whether married or living together
as partners) and all other persons in the household who are financially interdependent with that
economically dominant person or couple. We restrict the sample to households where the head
is between 25 and 60 and the household labor income and total income (as defined below) are
above $5,000. Weights are used throughout.

Consistent with our definition in the CPS, we define labor income as the sum of wage and
salary income (X5702), income from sole proprietorship and farm (X5704), income from other
businesses or investments, net rent, trusts, or royalties (X5714), and income from unemployment
or worker’s compensation (X5716). Total income consists of labor income, income from non-
taxable investments such as municipal bonds (X5706), income from other interest (X5708),
income from dividends (X5710), income from capital gains (X5712), and income from other
sources (X5724). Net worth (networth) consists of all real and financial assets net of all debts.

B.3 Panel Study of Income Dynamics

We resort to the Panel Study of Income Dynamics (PSID) to compute moments of the earnings
growth distribution. We focus on pre-tax labor earnings at the household level. We use surveys
from 1970 to 1992, as income definitions change after 1992 and the survey frequency becomes
biannual after 1997. To be consistent with our data treatment in CPS and SCF, we include the
labor incomes of head and wife, consisting of: the labor part of farm income and business income,
wages, bonuses, overtime, commissions, professional practice, plus the labor part of income from
roomers and boarders.37 We further add: unemployment benefits received by the head; and
the shares of business and farm income allocated to asset income. Before 1976 the asset part of

37“Head” and “wife” are the PSID terminology for this time period.
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Table B.5: Earnings growth distribution: robustness

Moments Stand. deviation P90-10 Skewness Kurtosis

Benchmark 0.33 0.60 -0.37 12.48
Drop pre-1976 0.33 0.60 -0.32 12.23
No asset part 0.33 0.61 -0.37 11.33
No UI 0.34 0.62 -0.37 12.24
Not control. edu. 0.33 0.60 -0.36 12.71
Cutoff at $1,500 0.37 0.62 -0.25 16.27
Cutoff at $10,000 0.31 0.58 -0.23 11.52

Notes: This table summarizes moments of the earnings growth distribution for different earnings defi-
nitions.

business and farm income is bracketed and we assign the mid point of the interval. We translate
incomes into real values deflating by the CPI. Income growth is computed as log differences. We
use households where the head is between ages 25 and 60 and the household labor income is
above $5,000 in 2012 dollars. We use only the representative Survey Research Center sample.

We compute moments of the earnings growth distribution while keeping the household com-
position fixed; that is, requiring the head and wife to be the same individuals for three consecutive
years. We use residualized earnings; that is, we regress earnings on year, age of head, and college
education of head, and compute growth rates of the residuals. Table B.5 presents the results, as
well as several robustness checks where: (1) we drop observations before 1976 for whom parts of
income is bracketed: (2) we exclude the asset parts of business and farm income; (3) we exclude
unemployment benefits; (4) we do not control for education; and (5) we use two other income
thresholds typically used in the literature: $1,500, as in De Nardi, Fella, and Paz-Pardo (2019),
and $10,000, as in Heathcote and Tsujiyama (2021).

B.4 National Income and Product Accounts

We use data from the National Income and Product Accounts (NIPA) to calibrate consumption
taxes, capital taxes, and government spending.38

Following Bhandari and McGrattan (2021) and Bhandari, McGrattan, and Yao (2020), we
estimate consumption taxes as the ratio of revenues from sales and excise taxes (NIPA table
3.2 lines 5, 6, 7; table 3.3 lines 7, 8, 10), raised at the federal, state, and local level, over total
personal consumption expenditure (NIPA table 2.1 line 29). This yields a consumption tax of
6.26% in 2012.

We calibrate capital taxes τk to match the ratio of revenues from capital taxes to GDP. Our
measure of revenues adds revenues from the corporate income tax (NIPA table 3.1 line 5) to
an estimate for revenues from dividend taxes, which is obtained by multiplying income from
dividends (NIPA table 2.1 line 15) with a tax rate of 13.3%, as estimated in Bhandari and

38NIPA data is from the U.S. Bureau of Economic Analysis, accessed on November 6, 2022 with the
last data revision from October 27, 2022.

47



McGrattan (2021) and Bhandari, McGrattan, and Yao (2020).39 Note that we account for
business income in labor income, which is taxed at personal income tax rates. Also, a large
portion of interest income accrues in tax deferred accounts (Bhandari et al. 2021), so we assume
zero revenues from interest income. GDP is given in NIPA in Table 1.1.5 line 1. We obtain a
ratio of revenues from capital taxes to GDP of 2.69%, resulting in an estimated capital tax rate
of τk = 29.84%.

We measure government revenues as total receipts (NIPA table 3.1 line 1) net of income
receipts on assets, current transfer receipts, and current surplus of government enterprises (NIPA
table 3.1 lines 10, 15, 19), for which there is no counterpart in the model. Government revenue-
to-GDP ratio amounts to 24.3% in the data, a number well matched in our model. Note that
total expenditure (NIPA table 3.1 line 20) amounts to 34.9% of GDP, the difference between
expenditure and revenues being accounted for by deficits. As the calibration is in steady state,
we choose to target total revenues rather than total expenditure.40

Government revenues are split between interest payments, transfers, and public spending
in the model. Interest payments (NIPA table 3.1 line 27) account for 4.33% of GDP, versus
2.0% in the model. Interest payments in NIPA include the service of the debt at the state and
city levels, which is typically charged with higher interest rates. We compute transfers at the
aggregate level as the sum of food stamps (NIPA table 3.12 line 21), refundable tax credits
(NIPA table 3.12 line 25), family assistance (NIPA table 3.12 line 35), general assistance (NIPA
table 3.12 line 37), energy assistance (NIPA table 3.12 line 38), and other assistance (NIPA
table 3.12 line 39). This computation results in a transfer-to-output ratio of 1.42%—slightly
larger than in the model, which is to be expected as the model is calibrated to working-age
households with positive labor income.

B.5 Flow of Funds

The target for the debt-to-GDP ratio is computed as follows. From Table D3 in Financial
Accounts of the United States, we sum federal government, state and local debt. Dividing by
GDP yields a debt-to-GDP ratio of 98.6%.41

C Quantitative model: Calibration and solution

C.1 Tax function

Figure C.1 compares average and marginal tax rates implied by the log-linear tax function and
the new tax function. In the new tax function, we set θ = 0.08 and λ = 0.25, as in the

39Their estimate is for 2007, whereas we calibrate to the 2012 U.S. economy. Statutory rates for both
ordinary and qualified dividends were similar in these years.

40An equivalent interpretation of the model is that the government receives, for free, an extra 10% of
GDP in public goods, which are produced by the rest of the world. Whether that inflow is maintained
or not after the tax reform is irrelevant to the optimal tax reform, as G is not valued.

41The Financial Accounts are released by the Federal Reserve Board. We accessed the data on Novem-
ber 7, 2022 with the data having been released on September 9, 2022.
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Figure C.1: New income tax function: comparison to log-linear function

Notes: This figure compares average and marginal tax rates implied by the log-linear tax function and
the new tax function for τ = θ = 0.08. Labor income is plotted relative to mean income.

calibration. The corresponding parameters in the log-linear tax function are τ = 0.08 and
λ = 1− 0.25.

C.2 Numerical solution

C.2.1 Steady state

To solve for the steady state of the economy, we need to find the real interest rate r that clears
the capital market and the level of transfers m that clears the government budget constraint. We
explain next how we do this.

0. Set grids for assets a⃗ and productivity levels z⃗. Let Na = 300 and Nz = 19 be the number
of points in each grid, respectively. Compute the transition matrix of productivities
πz(z

′, z) using Farmer and Toda (2017).42

1. Guess values for the interest rate r and the transfer parameter m. From the firm’s first
order conditions, we can compute the wage w implied by the guessed r.

2. Solve for household policies by value function iteration. In particular, for a given guess,
guess a value function V (a, z) and update the value function as

V̂ (a, z) = max
a′≥a,n∈[0,1]

{
c1−σ

1− σ
−B

n1+φ

1 + φ
+ β

∑
z′∈z⃗

πz(z
′, z)V

(
a′, z′

)}
s.t. (1 + τc)c+ a′ ≤ wzn+ (1 + r)a− T (wzn, ra) .

42We use the Matlab package provided at https://alexisakira.github.io/discretization/.
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Iterate until
∥∥∥V̂ − V

∥∥∥ < εV . We use εV = 1e− 10.

3. Compute the stationary measure implied by the optimal policies of step 2. In particular,
for a given guess µ(a, z), compute implied measure µ̂(a, z) as

µ̂(ai′ , zj′) =

Na∑
i=1

Nz∑
j=1

L
{
ai′ = a′(ai, zj)

}
πz(zj′ , zj)µ(ai, zj)

where L computes a linear interpolation: L(ai, a′) = I (a′ ∈ (ai−1, ai])
a−ai−1

ai−ai−1
. Iterate

until ∥µ̂− µ∥ < εµ. We use εµ = 1e− 11.

4. Compute asset market clearing error: EK = A−D − K̂ where A =
∫
adµ(a, z) is house-

holds’ asset holdings and K̂ = L
(

r+δ
1−α

)−1/α
is capital demand given interest rate and

labor supply L =
∫
n(a, z)dµ(a, z). Also compute government budget constraint error

EG = G+ rD−
∫
T (wzn(a, z), ra) dµ(a, z) + τc

∫
c(a, z)dµ(a, z). Let E(X) ≡

(
EK , EG

)
collect the two errors given the guess X ≡ {m, r}. An equilibrium can be written as

E(X) = 0. (27)

We solve for X in equation (27) using a quasi-Newton method.

C.2.2 One transition

We assume a once-and-for-all fiscal reform, where the two tax parameters, λ and θ ,and the
transfer phase-out, ξ, jump to their new values. The transfer level {mt} adjusts every period
to clear the government budget constraint. We assume that the economy has converged to its
new steady state T̄ periods after the shock. We first compute the new steady state as described
in Section C.2.1 and obtain the value function V̄ (a, z) and the equilibrium vector X̄ = (m̄, r̄)

of the new steady state. As the economy has converged in T̄ , we know that the value function
at t = T̄ equals its steady-state value VT̄ (a, z) = V̄ (a, z). We also know that the measure at
time t = 1 is equal to the initial steady-state value µ1(a, z) = µ(a, z). Then, given a guess
for transfers and interest rates {mt, rt}T̄t=1 such that (mT̄ , rT̄ ) = (m̄, r̄), we solve the household
problem backwards, the measure µt forward, and iterate on the sequence {mt, rt}T̄t=1 using a
quasi-Newton algorithm to clear markets.

C.2.3 Global optimum

To find the optimal tax reform, we rely on the TikTak Global Optimization multistart algorithm—
see Arnoud, Guvenen, and Kleineberg (2022) for a detailed description.43

We optimize on the triplet {θ, λ, ξ}. For each triplet, we compute the transition as de-
scribed in Section C.2.2. The algorithm looks for the triplet that maximizes welfare at the

43We use the Fortran package provided at https://github.com/serdarozkan/TikTak.
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Table C.1: Income risk in the model

Moments Stand. deviation P90-10 Skewness Kurtosis

Data 0.33 0.60 -0.37 12.48
Model 0.34 0.62 -0.31 13.25

Notes: Income risk in the data (PSID) and in the model.

Table C.2: Distribution of hours in the model

log hours Q1 Q2 Q3 Q4 Q5 v(log h)

Data -0.47 -0.03 0.05 0.13 0.33 0.097
Model -0.41 -0.06 0.07 0.16 0.24 0.063

Notes: Average log hours per quintile minus mean of log hours, sorting households per hours worked,
variance of log hours. Empirical moments are computed using CPS date (see Section B.1).

implementation of the fiscal reform; that is,∫
V1(a, z)dµ(a, z).

We start local optimizers using the best 40 points in a Sobol sequence of 672 points. The local
optimizer is Nelder Mead.

C.3 Income risk

Table C.1 compares the income risk moments in the model to their targeted data counterparts.

C.4 Hours

Table C.2 presents two measures of dispersion: average log hours per quintile of hours worked
relative to the average log hours across all households, and variance of log hours. The correlation
of hours worked with hourly wages is close to zero: it is slightly positive at 0.04 in the model,
vs. slightly negative at -0.05 in the data.

C.5 Model validation: Wealth effects and elasticities

Wealth effects.—Golosov et al. (2021) combine data covering the universe of U.S. taxpayers
from 1999 to 2016 with data on winnings in state lotteries. There are 45 U.S. states that run
a state lottery and winnings above $600 are reported to tax authorities, as lottery winnings are
considered taxable income. They restrict the sample to wins of more than $30K. They estimate
wealth effects on labor earnings during the five years following a lottery win, and report average
effects.
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We replicate this estimation strategy in the model as follows. Starting from the steady state
distribution, we increase each household’s assets by the size of the lottery win. We perform our
exercise in partial equilibrium, where prices and taxes are held constant–as the mass of lottery
winners is negligible in the data and winnings are not financed from taxes. We compute average
labor earnings of households for the next five years using non-stochastic simulation, similar to
Young (2010). As control group, we also simulate a panel of households not experiencing a
wealth shock. The difference between the labor earnings of the two groups gives the change in
labor earnings due to the wealth shock.

Section 3.5 reports estimates from Golosov et al. (2021) as well as the model implied re-
sponses for two win sizes. The first size is the average lottery win size of $180,000 in 2015
U.S. dollars. Large wins are defined as being above $1,000,000, but their distribution is not
provided. We use a large win size of $2,000,000, which roughly corresponds to the present
discounted value of a (annual) perpetuity of $28,200, discounted with the calibrated after-tax
interest rate of 1.4%.

Labor elasticity at the top.—We follow Kindermann and Krueger (2022) to evaluate labor
elasticities in the model. Starting from the calibrated steady state, we assume an unexpected
1%-increase of labor tax rates for all households. We consider different cases varying the persis-
tence of the tax change: from a one-period change to a permanent change. The experiment is
conducted in partial equilibrium, and without adjusting the government’s budget constraint. We
report the labor elasticity of the top-1% income group, using their labor response at the moment
of the shock.

D Quantitative model: Results

D.1 Optimal steady state

The fiscal plan that optimizes steady-state welfare is: m = 0.21, θ = 0.11, λ = 0.28, and
ξ = 5.63. In line with Bakış, Kaymak, and Poschke (2015), the optimal plan is more generous
when incorporating transitions. Transfers at the bottom are only $17,500, compared to $19,800
when including transitions.

D.2 Consumption equivalents and welfare decomposition

D.2.1 Consumption equivalents

Consumption equivalents γ(a, z) are computed as the increase in consumption in the status quo
which would make household (a, z) indifferent between the status quo and the tax reform. More
formally, one can write V (a, z), the life-time utility of a household with state (a, z) in the status
quo, as

V (a, z) = E0

[ ∞∑
t=0

βt

{
c1−σ
t

1− σ
−B

n1+φ
t

1 + φ

}
|a, z

]
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Table D.1: Welfare decomposition

Source of welfare gains Total Consumption Leisure

Efficiency 4.6% -115.5% 120.0%
Redistribution 17.9% 14.6% 3.3%
Insurance 77.5% 84.5% -7.0%

Notes: This table decomposes the welfare gains in three components: efficiency, redistribution, and
insurance. Each component is further decomposed in terms of consumption and leisure.

where expectation E0 is taken over future paths of shocks given individual states at the moment
of the tax reform.

For a given policy τ , let V τ
1 (a, z) be the utility of household (a, z) when implementing the

reform. We compute γ(a, z) such that

E0

[ ∞∑
t=0

βt

{
[(1 + γ(a, z))ct]

1−σ

1− σ
−B

n1+φ
t

1 + φ

}
|a, z

]
= V τ

1 (a, z).

Consumption equivalents are thus equal to

γ(a, z) = −1 +

[
1 +

V τ
1 (a, z)− V (a, z)

C(a, z)

] 1
1−σ

, (28)

where C(a, z) = E0

[∑∞
t=0 β

t
{

c1−σ
t
1−σ

}
|a, z

]
can be computed using a simple iteration of policy

functions. Finally, we aggregate over the distribution of consumption equivalents using the
measure in the status quo.

D.2.2 Welfare decomposition

We follow the new decomposition proposed by Bhandari et al. (2022).44 Table D.1 reports
the contribution of aggregate efficiency, redistribution, and insurance to the total welfare gains
generated by the tax reform described in Section 4. Each component is further decomposed in
terms of leisure and consumption.

D.3 Optimal log-linear plan

We compute the optimal log-linear tax plan using a labor tax function as in the analytical
section: T (y) = y − λ(y/ȳ)1−τ . The economy is calibrated in steady state as described in
Section 3, and a planner implements a one-time fiscal reform where the benchmark taxes and
transfers are replaced by a log-linear function with constant income-tax progressivity τ . As in
Section 4, we take into account transitions for welfare computations. The optimal plan features
τ = 0.39. Table 5 reports average and marginal tax rates across income quintiles.

44We thank the authors for sharing detailed notes on how to implement this decomposition in a related
framework.
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Table D.2: Optimal t&T plans with phasing-out under alternative calibrations

m θ ξ λ

Income distribution

Benchmark 0.23 0.14 3.41 0.36
No Pareto 0.22 0.06 2.83 0.37
Richer Poor 0.14 0.15 1.97 0.34

Income risk

No Pareto Normal 0.22 0.06 2.46 0.39
No Pareto Persistent 0.23 0.05 2.34 0.41

Fiscal Space

Low Spending 0.25 0.16 3.18 0.32

Preferences

Low σ & φ 0.20 0.13 4.04 0.31

Notes: This table presents statistics of the optimal t&T plan with phasing-out for the benchmark
economy and 7 alternative calibrations.

D.4 Robustness

Table D.2 presents the parameters of the optimal t&T system with phasing-out, for the seven
alternative calibrations described in Section 5. We also report the benchmark for compari-
son. Transfers are rescaled to be comparable to the benchmark economy.

The main take-aways are in line with those for the optimal UBI presented in Table 7. The
right tail of the income distribution primarily alters progressivity θ, while the left tail changes
transfers m. Lower spending increases both optimal m and θ, while higher Frisch elasticity/lower
risk-aversion tends to lower both m and θ.

E Data Availability

Code replicating the tables and figures in this article can be found in Ferriere et al. (2023) in
the Harvard Dataverse, https://doi.org/10.7910/DVN/ZQVFEZ.
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